【题目】已知棱台,平面平面,,,,D,E分别是和的中点。
(Ⅰ)证明:;
(Ⅱ)求与平面所成角的余弦值。
【答案】(Ⅰ)详见解析(Ⅱ)
【解析】
(I) 取中点,可得平面,则,利用中位线的关系可得,从而可得平面,即可证明结论;(II)解法一,取中点,可得平面平面,平面平面,所以点E在平面的射影在DG上,故为与平面所成角,然后解三角形即可求解;解法二,构造空间直角坐标系,求出平面的法向量,利用向量法即可求解.
解:(Ⅰ)如图,取中点,连接.
因为,所以.
由平面平面,平面平面,
得平面,
所以,又,且,所以.
因为,所以平面,所以.
(Ⅱ)解法一:如图,取中点,连接,
则可知,所以平面即是平面.
因为平面,所以平面平面,
则为与平面所成角.
令,又由,,
可得,则,
所以.
解法二:如图,以为坐标原点,过点且垂直于平面的直线,和,所在直线分别为轴、轴、轴,建立空间直角坐标系.
令,则,
所以,.
设平面的法向量,与平面所成角为.
而,,所以即
令,则,所以,
故
,
又与平面所成的角为锐角,所以.
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,,,,为棱上的动点.
(1)若为的中点,求证:平面;
(2)若平面平面ABC,且是否存在点,使二面角的平面角的余弦值为?若存在,求出的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设常数,函数
(1)当时,判断在上单调性,并加以证明;
(2)当时,研究的奇偶性,并说明理由;
(3)当时,若存在区间使得在上的值域为,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组,,第二组,,第八组,,如图是按上述分组方法得到的频率分布直方图的一部分.
(1)求第七组的频率,并完成频率分布直方图;
(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);
(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了节能减排,发展低碳经济,我国政府从2001年起就通过相关扶植政策推动新能源汽车产业发展.下面的图表反映了该产业发展的相关信息:
2019年2月份新能源汽车销量结构图根据上述图表信息,下列结论错误的是( )
A.2018年4月份我国新能源汽车的销量高于产量
B.2017年3月份我国新能源汽车的产量不超过3.4万辆
C.2019年2月份我国插电式混合动力汽车的销量低于1万辆
D.2017年我国新能源汽车总销量超过70万辆
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,分别为双曲线的左、右焦点,以为直径的圆与双曲线在第一象限和第三象限的交点分别为,,设四边形的周长为,面积为,且满足,则该双曲线的离心率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列、、,对于给定的正整数,记,.若对任意的正整数满足:,且是等差数列,则称数列为“”数列.
(1)若数列的前项和为,证明:为数列;
(2)若数列为数列,且,求数列的通项公式;
(3)若数列为数列,证明:是等差数列 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com