精英家教网 > 高中数学 > 题目详情
设正项等比数列{an}的首项a1=,前n项和为Sn,且-a2,a3,a1成等差数列.
(Ⅰ)求数列{an}的通项;
(Ⅱ)求数列{nSn}的前n项和Tn
【答案】分析:(I)利用等差中项可得a1-a2=2a3,再利用等比数列的通项公式即可得到a1及q;
(II)利用等比数列的前n项和公式即可得到Sn,再利用“错位相减法”即可得到数列{nSn}的前n项和Tn
解答:解:(Ⅰ)设设正项等比数列{an}的公比为q(q>0),由题有a1-a2=2a3,且
,即有2q2+q-1=0,解得q=-1(舍去)或

(Ⅱ)因为是首项、公比都为的等比数列,故
则数列{nSn}的前n项和 

前两式相减,得  =

点评:熟练掌握等差中项、等比数列的通项公式、等比数列的前n项和公式、“错位相减法”是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设正项等比数列{an}的首项a1=
12
,前n项和为Sn,且210S30-(210+1)S20+S10=0,则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设正项等比数列{an}的前n项和为Sn,已知a2=2,a3a4a5=29
(1)求首项a1和公比q的值;
(2)试证明数列{logman}(m>0且m≠1)为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江二模)设正项等比数列{an}的首项a1=
12
,前n项和为Sn,且-a2,a3,a1成等差数列.
(Ⅰ)求数列{an}的通项;
(Ⅱ)求数列{nSn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌三模)设正项等比数列{an}的前n项之积为Tn,且T10=32,则
1
a5
+
1
a6
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设正项等比数列{an}的首项a1=
12
,前n项的和为Sn,210S30-(210+1)S20+S10=0.
(Ⅰ)求{an}的通项;
(Ⅱ)求{nSn}的前n项和Tn

查看答案和解析>>

同步练习册答案