精英家教网 > 高中数学 > 题目详情

在直三棱柱ABC-A1B1C1中,BC=CC1,AB⊥BC.点M,N分别是CC1,B1C的中点,G是棱AB上的动点.
(Ⅰ)求证:B1C⊥平面BNG;
(Ⅱ)若CG∥平面AB1M,试确定G点的位置,并给出证明.

解:(I):∵在直三棱柱ABC-A1B1C1中,BC=CC1=BB1,点N是B1C的中点,
∴BN⊥B1C…(1分)
∵AB⊥BC,AB⊥BB1,BB1∩BC=B
∴AB⊥平面B1BCC1…(3分)
∵B1C?平面B1BCC1
∴B1C⊥AB,即B1C⊥GB…(5分)
又∵BN∩BG=B,BN、BG?平面BNG
∴B1C⊥平面BNG…(6分)
(II)当G是棱AB的中点时,CG∥平面AB1M.…(7分)
证明如下:
连接AB1,取AB1的中点H,连接HG、HM、GC,
则HG为△AB1B的中位线
∴GH∥BB1,GH=BB1…(8分)
∵由已知条件,B1BCC1为正方形
∴CC1∥BB1,CC1=BB1
∵M为CC1的中点,
…(11分)
∴MC∥GH,且MC=GH
∴四边形HGCM为平行四边形
∴GC∥HM…(12分)
又∵GC?平面AB1M,HM?平面AB1M,
∴CG∥平面AB1M…(14分)
分析:(I)由直三棱柱的性质结合AB⊥BC,得AB⊥平面B1BCC1,从而B1C⊥GB,在等腰△BB1C中,利用中线BN⊥B1C,根据线面垂直的判定定理,得到B1C⊥平面BNG.
(II)当G是棱AB的中点时,CG∥平面AB1M.连接AB1,取AB1的中点H,连接HG、HM、GC,用三角形中位线定理,得到GH∥BB1且GH=BB1,在正方形B1BCC1中证出MC∥BB1且MC=BB1,所以GH与MC平行且相等,得到四边形HGCM为平行四边形,GC∥HM,最后结合线面平行的判定定理,得到CG∥平面AB1M.
点评:本题给出一个侧面是正方形的直三棱柱,求证线面垂直并探索线面平行的存在性,考查了线面垂直的判定与性质、线面平行的判定定理等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中点.
(Ⅰ)求证:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大小;
(Ⅲ)求直线B′D与平面AB′C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)如图,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
2
a
,则AB′与侧面AC′所成角的大小为
30°
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有两个动点E,F,且EF=a (a为常数).
(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直;
(Ⅱ)判断三棱锥B-CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直线B′C与平面ABC成30°角.
(1)求证:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,点D是BC的中点,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲过点A′作一截面与平面AC'D平行,问应当怎样画线,写出作法,并说明理由;
(2)求异面直线BA′与 C′D所成角的余弦值.

查看答案和解析>>

同步练习册答案