精英家教网 > 高中数学 > 题目详情

【题目】已知函数上是增函数,则的取值范围是(  )

A. B. C. D.

【答案】C

【解析】

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,

则当x∈[2,+∞)时,

x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数

,f(2)=4+a>0

解得﹣4<a≤4

故选:C.

【点睛】

本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.

型】单选题
束】
10

【题目】圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为(  )

A. B. C. D.

【答案】D

【解析】

根据圆锥的体积求出底面圆的半径和高,求出母线长,即可计算圆锥的表面积.

圆锥的高和底面半径之比

又圆锥的体积

解得

母线长为

则圆锥的表面积为

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱柱中,侧棱与底面垂直, ,点分别为的中点.

(1)证明: 平面

证明: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合Pn={1,2,…,n},n∈N* . 记f(n)为同时满足下列条件的集合A的个数:
①APn;②若x∈A,则2xA;③若x∈ A,则2x A.
(1)求f(4);
(2)求f(n)的解析式(用n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,底面是边长为的菱形,,侧面为正三角形,侧面底面为侧棱的中点,为线段的中点

(Ⅰ)求证:平面

(Ⅱ)求证:

(Ⅲ)求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为集合AB{x|x<a}

(1)求集合A

(2)ABa的取值范围;

(3)若全集U{x|x4}a=-1U AA(U B)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4﹣4:坐标系与参数方程):
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ= 与曲线 (t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A是单位圆x2+y2=1上的任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.
(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;
(2)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某自来水厂的蓄水池有吨水,水厂每小时可向蓄水池中注水吨,同时蓄水池又向居民小区不间断供水,小时内供水总量为吨,其中

)从供水开始到第几小时,蓄水池中的存水量最少? 最少水量是多少吨?

)若蓄水池中水量少于吨时,就会出现供水紧张现象,请问:在一天的小时内,大约有几小时出现供水紧张现象?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为为抛物线上一点,且不在直线周长的最小值为

A. B. C. D.

查看答案和解析>>

同步练习册答案