精英家教网 > 高中数学 > 题目详情

【题目】如图,△为一个等腰三角形形状的空地,腰的长为(百米),底的长为(百米),现决定在空地内筑一条笔直的小路(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等.

1)若小路一端的中点,求此时小路的长度;

2)求分成的四边形的面积的最小值.

【答案】(1)(2)

【解析】

1)计算得到,利用余弦定理计算得到答案.

2)讨论小路的端点分别在两腰上和一腰一底边上时的面积最小值,分别计算得到答案.

1)因为,所以点上,满足,又

由余弦定理得

2)若小路的端点分别在两腰上时,设

则有,易知

,当时等号成立

即四边形面积的最小值是

同理可得小路的端点分别在一腰一底上时,四边形面积的最小值是

综上所述:四边形面积的最小值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为响应绿色出行,某市在推出共享单车后,又推出新能源分时租赁汽车.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:根据行驶里程数按1/公里计费;行驶时间不超过分时,按/分计费;超过分时,超出部分按/分计费.已知王先生家离上班地点公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间 ()是一个随机变量.现统计了次路上开车花费时间,在各时间段内的频数分布情况如下表所示:

时间(分)

频数

将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为分.(1)写出王先生一次租车费用(元)与用车时间(分)的函数关系式;(2)若王先生一次开车时间不超过分为路段畅通”,表示3次租用新能源分时租赁汽车中路段畅通的次数,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列,满足.

1)若,求数列前10项和;

2)若,且数列2017项中有100项是0,求的可能值;

3)求证:在数列中,存在,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥PABC,点PABC都在半径为的球面上,若PAPBPC两两互相垂直,则球心到截面ABC的距离为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧面为等边三角形且垂直于底面.

1)证明:平面

2)若四棱锥的体积为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(1)求椭圆的方程;

(2)如图,过定点的直线交椭圆两点,连接并延长交,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在处取得极值,其中为常数.

I)试确定的值;

II)讨论函数的单调区间;

III)若对任意,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年的423日为世界读书日,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查.该调查机构从该校随机抽查了100名不同性别的学生(其中男生45名),统计了每个学生一个月的阅读时间,其阅读时间(小时)的频率分布直方图如图所示:

1)求样本学生一个月阅读时间的中位数.

2)已知样本中阅读时间低于的女生有30名,请根据题目信息完成下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下认为阅读与性别有关.

列联表

总计

总计

附表:

0.15

0.10

0.05

2.072

2.706

3.841

其中:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示为一名曰堑堵的几何体,已知 AE⊥底面BCFE DF AE DF = AE = 1 CE =,四边形ABCD 是正方形.

1)《九章算术》中将四个面都是直角三角形的四面体称为鳖臑.判断四面体 EABC 是否为鳖臑,若是,写出其 每一个面的直角,并证明;若不是,请说明理由.

2)求四面体 EABC 的体积.

查看答案和解析>>

同步练习册答案