精英家教网 > 高中数学 > 题目详情

已知函数f(x) = ,若a < b,且f(a) = f(b),则a + 2b的取值范围是________ .

 

【答案】

(3,+∞)

【解析】

试题分析:画出y=|lgx|的图象如图:∵0<a<b,且f(a)=f(b),

∴|lga|=|lgb|且0<a<1,b>1,

∴-lga=lgb,即ab=1,

∴y=a+2b=a+,a∈(0,1),

在(0,1)上为减函数,

,∴a+2b的取值范围是(3,+∞),故答案为 (3,+∞).

考点:对数函数的值域与最值;对数的运算性质.

点评:本题主要考查了对数函数的图象和性质,利用“对勾”函数求函数值域的方法,数形结合的思想方法,转化化归的思想方法,属基础题

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案