精英家教网 > 高中数学 > 题目详情

如图,在五面体中,已知平面

(1)求证:
(2)求三棱锥的体积.

(1)详见解析,(2)

解析试题分析:(1)证明线线平行,一般思路为利用线面平行的性质定理与判定定理进行转化. 因为平面平面,所以平面,又平面,平面平面,所以.(2)求三棱锥的体积,关键是找寻高.可由面面垂直性质定理探求,因为平面,所以有面平面,则作就可得平面.证明平面过程也可从线线垂直证线面垂直.确定是三棱锥的高之后,可利用三棱锥的体积公式.
试题解析:

(1)因为平面平面
所以平面,                         3分
平面,平面平面
所以.                                 6分
(2)在平面内作于点
因为平面平面,所以
平面
所以平面
所以是三棱锥的高.                 9分
在直角三角形中,,所以
因为平面平面,所以
又由(1)知,,且,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平面平面,且四边形为矩形,四边形为直角梯形,
,,,,.
(1)作出这个几何体的三视图(不要求写作法).
(2)设是直线上的动点,判断并证明直线与直线的位置关系.
(3)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直角梯形中,°,平面,设的中点为

(1) 求证:平面
(2) 求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•浙江)如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.
(1)证明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.

(1)求证:AC⊥DE;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在体积为的正三棱锥中,长为为棱的中点,求

(1)异面直线所成角的大小(结果用反三角函数值表示);
(2)正三棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一个几何体的三视图如图所示.

(1)求此几何体的表面积;
(2)在如图的正视图中,如果点为所在线段中点,点为顶点,求在几何体侧面上从点到点的最短路径的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,矩形ABCD中,AB=a,AD=b,过点D作DE⊥AC于E,交直线AB于F.现将△ACD沿对角线AC折起到△PAC的位置,使二面角PACB的大小为60°.过P作PH⊥EF于H.

(1)求证:PH⊥平面ABC;
(2)若a+b=2,求四面体PABC体积的最大值.

查看答案和解析>>

同步练习册答案