精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列的前项的和为公差成等比数列数列满足对于任意的等式都成立.

(1)求数列的通项公式

(2)证明:数列是等比数列

(3)若数列满足试问是否存在正整数(其中),使成等比数列若存在求出所有满足条件的数组若不存在请说明理由.

【答案】(1) ;(2)见解析;(3)见解析.

【解析】分析:(1)根据已知解方程组得,即得数列的通项公式.(2)利用作差法化简

即得,即证明数列是等比数列.(3)先化简,再化简成等比数列,对s分类讨论得解.

详解:(1)设数列公差为,由题设得

解得

∴数列的通项公式为:.

(2)∵

,①

,②

由②-①得,③

,④

由④-③得

由①知,∴.

,∴数列是等比数列.

(3)假设存在正整数(其中),使成等比数列,则成等差数列.

由(2)可知:,∴.

于是,.

由于,所以

因为当时,,即单调递减,

所以当时,,不符合条件,

所以

,所以,所以

时,得,无解,

时,得,所以

综上:存在唯一正整数数组,使成等比数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数在点处取得极值.

(1)求的值;

(2)若有极大值,求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,在四面体PABC中,S1,S2,S3,S分别表示PAB,PBC,PCA,ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知任意角以坐标原点为顶点,轴的非负半轴为始边,若终边经过点,且,定义:,称“”为“正余弦函数”,对于“正余弦函数”,有同学得到以下性质:

①该函数的值域为; ②该函数的图象关于原点对称;

③该函数的图象关于直线对称; ④该函数为周期函数,且最小正周期为

⑤该函数的递增区间为.

其中正确的是__________.(填上所有正确性质的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (为实常数)

I)当时,求函数上的最大值及相应的值;

II)当时,讨论方程根的个数.

III)若,且对任意的,都有,求

实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表。

A地区用户满意度评分的频率分布直方图

B地区用户满意度评分的频数分布表

(Ⅰ)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);

(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:

满意度评分

低于70分

70分到89分

不低于90分

满意度等级

不满意

满意

非常满意

估计哪个地区的满意度等级为不满意的概率大?说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形中, = == 分别在上, ,现将四边形沿折起,使.

(1)若,在折叠后的线段上是否存在一点,使得平面?若存在,求出的值;若不存在,说明理由;

(2)求三棱锥的体积的最大值,并求出此时点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和为,且

(1)求数列的通项公式;

(2)若数列满足:,求 的通项公式;

(3)令,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,函数的最小值为.

(1)当时,求的值;

(2)求

(3)已知函数为定义在上的增函数,且对任意的都满足,问:是否存在这样的实数,使不等式对所有恒成立,若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案