精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥P-ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.
(I)求点P到平面ABCD的距离,
(II)求面APB与面CPB所成二面角的大小.
(I)如图,作PO⊥平面ABCD,垂足为点O.连接OB、OA、OD、OB与AD交于点E,连接PE.

∵AD⊥PB,∴AD⊥OB,
∵PA=PD,∴OA=OD,
于是OB平分AD,点E为AD的中点,所以PE⊥AD.由此知∠PEB为面PAD与面ABCD所成二面角的平面角,
∴∠PEB=120°,∠PEO=60°
由已知可求得PE=
3

∴PO=PE•sin60°=
3
×
3
2
=
3
2

即点P到平面ABCD的距离为
3
2

(II)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于DA.P(0,0,
3
2
),B(0,
3
3
2
,0),PB中点G的坐标为(0,
3
3
4
3
4
)
.连接AG.

又知A(1,
3
2
,0),C(-2,
3
3
2
,0)
.由此得到:
GA
=(1,-
3
4
,-
3
4
)

PB
=(0,
3
3
2
,-
3
2
),
BC
=(-2,0,0)

于是有
GA
PB
=0,
BC
PB
=0

所以
GA
PB
BC
PB
.
GA
BC
的夹角θ

等于所求二面角的平面角,
于是cosθ=
GA
BC
|
GA
|•|
BC
|
=-
2
7
7

所以所求二面角的大小为π-arccos
2
7
7

解法二:如图,取PB的中点G,PC的中点F,连接EG、AG、GF,则AG⊥PB,FGBC,FG=
1
2
BC.

∵AD⊥PB,∴BC⊥PB,FG⊥PB,
∴∠AGF是所求二面角的平面角.
∵AD⊥面POB,∴AD⊥EG.
又∵PE=BE,∴EG⊥PB,且∠PEG=60°.
在Rt△PEG中,EG=PE•cos60°=
3
2

在Rt△PEG中,EG=
1
2
AD=1.
于是tan∠GAE=
EG
AE
=
3
2

又∠AGF=π-∠GAE.
所以所求二面角的大小为π-arctan
3
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知:点平面,求证:过有且只有一个平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱柱ABC-A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC的中点
(1)求证:直线AF平面BEC1
(2)求A到平面BEC1的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将边长为a的正方形ABCD沿对角线AC折成直二面角,则BD的长度为(  )
A.
1
2
a
B.
2
2
a
C.
3
2
a
D.a

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体中ByD-中1B1y1D1中,∠中B中1=10°,中中1=1,则中中1与By1间的距离为(  )
A.2B.
3
C.
2
D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

二面角α-l-β大小为60°,半平面α、β内分别有点A、B,AC⊥l于C、BD⊥l于D,已知AC=4、CD=5,DB=6,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,正方体ABCD-A1B1C1D1的棱长为1,若E、F分别是BC、DD1中点,则B1到平面ABF的距离为(  )
A.
3
3
B.
5
5
C.
5
3
D.
2
5
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知△ABC为直角三角形,且∠ACB=90°,AB=8,点P是平面ABC外一点,若PA=PB=PC,且PO⊥平面ABC,O为垂足,则OC=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若一个球的半径为1,A、B为球面上两点,且|AB|=1,则A、B两点的球面距离为______.

查看答案和解析>>

同步练习册答案