精英家教网 > 高中数学 > 题目详情
20.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为$({\sqrt{3},0})$,且Γ上一点到其两焦点的距离之和为4.
(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)设直线y=x+m与椭圆Γ交于不同两点A,B,若点P(0,1)满足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|,求实数m的值.

分析 (Ⅰ)由椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为$({\sqrt{3},0})$,且Γ上一点到其两焦点的距离之和为4,求出a,b,即可求椭圆Γ的标准方程;
(Ⅱ)直线方程与椭圆方程联立,利用韦达定理确定AB的中点坐标,利用R(0,1),且|RA|=|RB|,可得斜率之间的关系,从而可得结论.

解答 解:(Ⅰ)∵椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为$({\sqrt{3},0})$,且Γ上一点到其两焦点的距离之和为4,
∴$c=\sqrt{3}$,a=2.…(2分)
故b=1.…(4分)
故椭圆方程为$\frac{x^2}{4}+{y^2}=1$.…(6分)
(Ⅱ)设A(x1,y1),B(x2,y2),由$\left\{\begin{array}{l}y=x+m\\{x^2}+4{y^2}-4=0\end{array}\right.$得5x2+8mx+4(m2-1)=0,
由△>0得$m∈({-\sqrt{5},\sqrt{5}})$.…(8分)
${x_1}+{x_2}=-\frac{8m}{5}$,得${y_1}+{y_2}=\frac{2m}{5}$,
故AB的中点$M({-\frac{4m}{5},\frac{m}{5}})$.…(11分)
因为PM⊥AB,所以$\frac{{\frac{m}{5}-1}}{{-\frac{4m}{5}}}=-1$,…(13分)
得$m=-\frac{5}{3}$满足条件.  …(15分)

点评 本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的函数y=f(x)满足下列三个条件:
①对任意的x∈R都有f(x+2)=-f(x);
②对于任意的0≤x1<x2≤2,都有f(x1)<f(x2),
③y=f(x+2)的图象关于y轴对称,
则下列结论中正确的是(  )
A.f(4.5)<f(6.5)<f(7)B.f(7)<f(6.5)<f(4.5)C.f(7)<f(4.5)<f(6.5)D.f(4.5)<f(7)<f(6.5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{4|lo{g}_{2}x|,0<x<2}\\{\frac{1}{2}{x}^{2}-5x+12,x≥2}\end{array}\right.$,若存在实数a、b、c、d,满足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,则abcd的取值范围是(  )
A.(16,21)B.(16,24)C.(17,21)D.(18,24)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设${({5\sqrt{x}-\root{3}{x}})^n}$展开式的各项系数的和为M,二项式系数的和为N,M-N=992,则展开式中x2项的系数为(  )
A.250B.-250C.150D.-150

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线C:y2=2px(p>0)的焦点为F(1,0),过F且斜率为1的直线l交抛物线C于A(x1,y1),B(x2,y2)两点.
(Ⅰ)求抛物线C的标准方程;
(Ⅱ)求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.向量$\overrightarrow a=(-2,1)$,$\overrightarrow b=(λ,1)$,若$\vec a$与$\vec b$的夹角为钝角,则λ的范围(  )
A.$(\frac{1}{2},2)∪(2,+∞)$B.(2,+∞)C.$(-∞,-\frac{1}{2})$D.$(\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆C:x2+y2+2x-4y-4=0与直线x-y+a=0相交于A,B两点,且AC⊥BC,则实数a的值为0或6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.上海迪士尼乐园有一块长方形地ABCD,若要在此地块上拟建一个Rt△MNP的主题乐园,已知AB=2km,AD=$\sqrt{3}$km,点M是AB的中点,点P在线段AD上,点N在线段BC上,记∠NMB=α.
(1)当α为何值时,Rt△MNP的面积S最大?并求出其最大值;
(2)当α为何值时,Rt△MNP的周长l最大?并求出其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,已知F1,F2是椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,若点Q为线段PF2的中点,则b的值为(  )
A.$\sqrt{3}$B.2C.$\sqrt{6}$D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案