精英家教网 > 高中数学 > 题目详情
8.已知⊙C:(x-5)2+y2=9,直线1:y=x+b,
(1)当⊙C与直线1相切时,求直线1的方程;
(2)当直线1被⊙C截得的弦长为4时,求直线1的方程;
(3)当点P(a,b)在⊙C上运动时,求$\frac{a}{b}$的最大值.

分析 (1)当⊙C与直线1相切时,圆心到直线的距离d=r,即可求直线1的方程;
(2)当直线1被⊙C截得的弦长为4时,圆心到直线的距离为$\sqrt{5}$,即可求直线1的方程;
(3)设$\frac{a}{b}$=k,则a=kb,代入⊙C:(x-5)2+y2=9,整理可得(k2+1)b2-10kb+16=0,利用△=(10k)2-64(k2+1)=0,求$\frac{a}{b}$的最大值.

解答 解:(1)当⊙C与直线1相切时,圆心到直线的距离d=$\frac{|5+b|}{\sqrt{2}}$=3,
∴b=-5±3$\sqrt{2}$,
∴直线1的方程y=x-5±3$\sqrt{2}$;
(2)当直线1被⊙C截得的弦长为4时,圆心到直线的距离为$\sqrt{5}$,
∴$\frac{|5+b|}{\sqrt{2}}$=$\sqrt{5}$,
∴b=-5±$\sqrt{10}$,
∴直线1的方程y=x-5±3$\sqrt{10}$;
(3)设$\frac{a}{b}$=k,则a=kb,代入⊙C:(x-5)2+y2=9,整理可得(k2+1)b2-10kb+16=0,
∴△=(10k)2-64(k2+1)=0,
∴k=±$\frac{4}{3}$,
∴$\frac{a}{b}$的最大值为$\frac{4}{3}$.

点评 本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.命题“?x∈R,x2-x+1>0”的否定是(  )
A.?x0∈R  x02-x0+1<0B.?x0∈R  x02-x0+1≤0
C.?x∈R  x2-x+1<0D.?x∈R  x2-x+1≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知实数a>0,命题p:?x∈R,|sinx|>a有解;命题q:?x∈[$\frac{\sqrt{2}}{2}$,1],x2+ax-1≥0恒成立.
(1)写出?q;        
(2)若p且q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a>0且a≠1,f(x)=${a}^{x}-\frac{1}{{a}^{x}}$
(1)判断函数f(x)是否有零点,若有求出零点;
(2)判断函数f(x)的奇偶性;
(3)讨论f(x)的单调性并用单调性定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校医务室抽查了高一10位同学的体重(单位:kg)如下:
74 71 72 68 76 73 67 70 65 74
(1)求这10个学生体重的均值、中位数、方差、标准差.
(2)估计高一所有学生体重的均值、中位数、方差、标准差.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,已知长方体的棱AB=BC=5,AA1=$\sqrt{5}$,则BC1与A1D1所成角的正切值是$\frac{\sqrt{5}}{5}$,BC1与B1D1所成角的余弦值是$\frac{\sqrt{15}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知非零向量$\overrightarrow{a},\overrightarrow{b}$,$\overrightarrow{AB}=\overrightarrow{a}+2\overrightarrow{b}$,$\overrightarrow{BC}=2\overrightarrow{a}-\overrightarrow{b}$,$\overrightarrow{CD}=\overrightarrow{a}+7\overrightarrow{b}$.
(1)试问:A,B,C,D四个点能否在一条直线上?证明你的结论.
(2)若A,B,C,D四点中仅有三点共线,求$\overrightarrow{a}$与$\overrightarrow{b}$满足的条件,并说明三点共线的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知定义在R上的函数f(x)满足①图象关于(1,0)点对称;②f(-1+x)=f(-1-x);③x∈[-1,1]时,f(x)=$\left\{\begin{array}{l}{1{-x}^{2},x∈[-1,0]}\\{cos\frac{π}{2}x,x∈(0,1]}\end{array}\right.$,则函数y=f(x)-($\frac{1}{2}$)|x|在区间[-3,3]上的零点个数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则:从A1,A2,A3,A4,A5,A6(如图所示)这6个点中任取两点,记选取y轴上的点(A3,A4)的个数为X,若X=0就参加学校合唱团,否则就参加排球队.
(1)记“从从A1,A2,A3,A4,A5,A6中任取两点”为事件N,请列举事件N的所有可能情况;
(2)求小波不参加学校合唱团的概率.

查看答案和解析>>

同步练习册答案