精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC,E为BC的中点,F在棱AC上,且AF=3FC,

(1)求证:AC⊥平面DEF;
(2)求平面DEF与平面ABD所成的锐二面角的余弦值.

【答案】
(1)证明:取AC的中点H,

∵AB=BC,∴BH⊥AC.

∵AF=3FC,∴F为CH的中点.

而E为BC的中点,∴EF∥BH.∴EF⊥AC.

∵△BCD是正三角形,∴DE⊥BC.

∵AB⊥平面BCD,∴AB⊥DE.

∵AB∩BC=B,∴DE⊥平面ABC.

∵AC平面ABC,∴DE⊥AC.

而DE∩EF=E,∴AC⊥平面DEF.


(2)解:取AC中点G,以E为原点,EC为x轴,EG为y轴,ED为z轴,

建立空间直角系,设AB=BC=2,

则E(0,0,0),C(1,0,0),A(﹣1,2,0),F( ,0),

B(﹣1,0,0),D(0,0, ),

=( , ,0), =(0,0, ),

设平面EFP的法向量 =(x,y,z),

,取x=1,得 =(1,﹣1,0),

设平面ABD的法向量 =(a,b,c),

=(0,﹣2,0), =(1,﹣2, ),

,取c=1,得 =( ),

设平面DEF与平面ABD所成的锐二面角为θ,

则cosθ= = =

∴平面DEF与平面ABD所成的锐二面角的余弦值为


【解析】(1)取AC的中点H,推导出BH⊥AC,EF⊥AC,DE⊥BC,AB⊥DE,DE⊥AC.由此能证明AC⊥平面DEF.(2)取AC中点G,以E为原点,EC为x轴,EG为y轴,ED为z轴,建立空间直角系,利用向量法能求出平面DEF与平面ABD所成的锐二面角的余弦值.
【考点精析】掌握直线与平面垂直的判定是解答本题的根本,需要知道一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,最小值为2的是(
A.y=x+
B.y=sinx+ ,x∈(0,
C.y=4x+2x , x∈[0,+∞)
D.y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数的解析式为f(x)= (a∈R).
(1)求出f(x)在[0,1]上的解析式;
(2)求f(x)在[﹣1,0]上的最大值.
(3)对任意的x1 , x2∈[﹣1,1]都有|f(x1)﹣f(x2)|≤M成立,求最小的整数M的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】偶函数f(x)(x∈R)满足:f(﹣4)=f(2)=0,且在区间[0,3]与[3,+∞)上分别递减,递增,则不等式xf(x)<0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:y=4x和点P(6,4),点A为第一象限内的点且在直线l上,直线PA交x轴正半轴于点B,
(1)当OP⊥AB时,求AB所在直线的直线方程;
(2)求△OAB面积的最小值,并求当△OAB面积取最小值时的B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)x2g(x)x1.

(1)若存在xR使f(x)<b·g(x),求实数b的取值范围;

(2)F(x)f(x)mg(x)1mm2,且|F(x)|上单调递增,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2﹣alnx+ (a∈R) (Ⅰ)求函数f(x)单调区间;
(Ⅱ)若a=﹣1,求证:当x>1时,f(x)< x3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若点P在椭圆 +y2=1上,F1、F2分别是椭圆的两焦点,且∠F1PF2=60°,则△F1PF2的面积是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修4-5:不等式选讲

已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).

(1)当m=7时,求函数f(x)的定义域;

(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.

查看答案和解析>>

同步练习册答案