【题目】为响应“精确扶贫”号召,某企业计划每年用不超过100万元的资金购买单价分别为1500元/箱和3000元/箱的A、B两种药品捐献给贫困地区某医院,其中A药品至少100箱,B药品箱数不少于A药品箱数.则该企业捐献给医院的两种药品总箱数最多可为( )
A.200
B.350
C.400
D.500
科目:高中数学 来源: 题型:
【题目】已知点P与两个定点O(0,0),A(-3,0)距离之比为.
(1)求点P的轨迹C方程;
(2)求过点M(2,3)且被轨迹C截得的线段长为2的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A、B、C三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A、B、C三种分期付款销售中,该经销商每销售此品牌汽车1俩所获得的利润分别是1万元,2万元,3万元.现甲乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.
(1)求甲乙两人采用不同分期付款方式的概率;
(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,求X的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,g(x)=lnx,其中e为自然对数的底数.
(1)求函数y=f(x)g(x)在x=1处的切线方程;
(2)若存在x1 , x2(x1≠x2),使得g(x1)﹣g(x2)=λ[f(x2)﹣f(x1)]成立,其中λ为常数,求证:λ>e;
(3)若对任意的x∈(0,1],不等式f(x)g(x)≤a(x﹣1)恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校的平面示意图为如下图五边形区域ABCDE,其中三角形区域ABE为生活区,四边形区域BCDE为教学区,AB,BC,CD,DE,EA,BE为学校的主要道路(不考虑宽度). , .
(1)求道路BE的长度;
(2)求生活区△ABE面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(x+a)﹣x,a∈R.
(1)当a=﹣1时,求f(x)的单调区间;
(2)若x≥1时,不等式ef(x)+ x2>1恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣2a|+|x+ |
(1)当a=1时,求不等式f(x)>4的解集;
(2)若不等式f(x)≥m2﹣m+2 对任意实数x及a恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com