精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

以平面直角坐标系的原点为极点, 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为 (为参数),曲线的参数方程为 (为参数),曲线的极坐标方程为.

(1)求曲线的公共点的极坐标;

(2)若为曲线上的一个动点,求到直线的距离的最大值.

【答案】(1) (2)

【解析】试题分析:(1)第(1)问,先把曲线 化成直角坐标方程,再解方程组得到两曲线交点的坐标,再把交点直角坐标化成极坐标. (2)第(2)问,利用参数方程设点,再求出到直线的距离,最后利用三角函数求它的最大值.

试题解析:

(1)因为曲线的参数方程为,( 为参数)

所以曲线的直角坐标方程为.

因为,所以曲线的直角坐标方程为.

两方程联立得

所以其极坐标分别为 .

(2)直线的普通方程为.

设点,则点l的距离

,即 时, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】判断下列函数的奇偶性:

1

2

3

4

5

6

7

8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在甲、乙两个班级进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下的2×2列联表.已知在全部105人中抽到随机抽取1人为优秀的概率为

优秀

非优秀

总计

甲班

10

乙班

30

合计

(1)请完成上面的列联表;

(2)根据列联表的数据,若按95%的可能性要求,能否认为“成绩与班级有关系”?

P(K2≥x0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

x0

0.455

0.708

1.323

2.072

2.076

3.841

5.024

6.635

7.879

10.828

参考公式及数据:K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线),直线与抛物线交于 (点在点的左侧)两点,且.

(1)求抛物线两点处的切线方程;

(2)若直线与抛物线交于两点,且的中点在线段上, 的垂直平分线交轴于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】x1x2是函数f(x)aln xbx2x的两个极值点.

(1)试确定常数ab的值;

(2)判断x1x2是函数f(x)的极大值点还是极小值点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知三棱锥中,底面是等边三角形,且分别是的中点.

(1)证明:平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求二次函数分别在下列定义域上的最大值和最小值.

1R

2

3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)写出命题两个有理数的和是有理数的逆命题、否命题、逆否命题;

2)判断上述四个命题的真假,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点是圆 上的任意一点,点与点的连线段的垂直平分线和相交于点.

(I)求点的轨迹方程;

(II)过坐标原点的直线交轨迹于点 两点,直线与坐标轴不重合. 是轨迹上的一点,若的面积是4,试问直线 的斜率之积是否为定值,若是,求出此定值,否则,说明理由.

查看答案和解析>>

同步练习册答案