精英家教网 > 高中数学 > 题目详情

【题目】某程序框图如图所示,该程序运行后输出的值是( )

A. B. C. D.

【答案】A

【解析】试题分析:题目首先给计数变量S和输出变量i赋值01,然后判断S50的大小关系,S小于等于50进入执行框,S大于50时结束.

解:因为S赋值为00不大于50S=S2+1=02+1=1i=2i+1=2×1+1=3

1不大于50S=S2+1=12+1=2i=2×3+1=7

2不大于50S=S2+1=22+1=5i=2×7+1=15

5不大于50S=S2+1=52+1=26i=2×15+1=31

26不大于50S=S2+1=262+1=667i=2×31+1=63

667大于50,算法结束,输出i的值为63

故选A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为13,且成绩分布在[40100],分数在80以上(80)的同学获奖.按文、理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图如图所示.

(1)a的值,并计算所抽取样本的平均值 (同一组中的数据用该组区间的中点值作代表)

(2)填写下面的2×2列联表,并判断能否有超过95%的把握认为“获奖与学生的文、理科有关”

文科生

理科生

合计

获奖

5

不获奖

合计

200

附表及公式:

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,D、E分别是△ABC的边BC的三等分点,设 =m, =n,∠BAC=

(1)用 分别表示
(2)若 =15,| |=3 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数f(x)=xlnx.
(1)求曲线f(x)在点(1,f(1))处的切线方程;
(2)对x≥1,f(x)≤m(x2﹣1)成立,求实数m的最小值;
(3)证明:1n .(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设顶点在原点,焦点在轴上的拋物线过点,过作抛物线的动弦 ,并设它们的斜率分别为 .

(Ⅰ)求拋物线的方程;

(),求证:直线的斜率为定值,并求出其值;

III)若,求证:直线恒过定点,并求出其坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列各函数中,最小值等于2的函数是(
A.y=x+
B.y=cosx+ (0<x<
C.y=
D.y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*
(1)证明:数列{ }是等差数列;
(2)设bn=3n ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图),设计要求彩门的面积为S (单位:m2)高为h(单位:m)(S,h为常数),彩门的下底BC固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l.
(1)请将l表示成关于α的函数l=f(α);
(2)问当α为何值时l最小?并求最小值.

查看答案和解析>>

同步练习册答案