精英家教网 > 高中数学 > 题目详情

(本小题满分14分) 如图,已知四棱锥P-ABCD中,PA⊥平面CDAB, ABCD是直角梯形,AD∥BC,∠BAD90º,BC2,PAAB1.

(1)求证:PD⊥AB;

(2)在线段PB上找一点E,使AE//平面PCD;

(3)求点D到平面PBC的距离.

 

【答案】

h=

【解析】解:(1)∵PA⊥平面CDAB,AB平面ABCD,∴PA⊥AB,   …………2分

又AB⊥AD,PAAD=A,∴AB⊥平面PAD,                    …………3分

∵PD平面PAD,∴AB⊥PD.                                   …………4分

(2)取线段PB的中点E,PC的中点F,连结AE,EF,DF,

EF是△PBC中位线,∴EF∥BC,;                    …………6分

又AD∥BC,,∴四边形EFDA是平行四边形,          …………8分

∴AE∥DF,又AE平面PDC,DF平面PDC,∴AE∥平面PDC,

故线段PB的中点E是符合题意要求的点.                        …………10分

(3)设点D到平面PBC的距离为h.∵BC⊥AB,BC⊥PA,∴BC⊥平面PAB,∴BC⊥PB,

PB=,S△PBC=PB·BC=,S△BDC=BC·AB=1  …………12分

∵VP-BDC=VD-PBC,即S△BDC·PA=S△PBC·h ,∴h=.           …………14分

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案