【题目】如图所示,在直角梯形中,,分别是上的点,,且(如图①).将四边形沿折起,连接(如图②).在折起的过程中,下列说法中错误的个数是( )
①平面;
②四点不可能共面;
③若,则平面平面;
④平面与平面可能垂直.
A. 0B. 1C. 2D. 3
科目:高中数学 来源: 题型:
【题目】在菱形ABCD中,∠A=60°,AB= ,将△ABC沿BD折起到△PBD的位置,若平面PBD⊥平面CBD,则三棱锥P﹣BCD的外接球体积为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线为参数),为参数).
(1)化的参数方程为普通方程,并说明它们分别表示什么曲线;
(2)若上的点对应的参数为为上的动点,求的中点到直线为参数)距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA= ,cosC=
(1)求索道AB的长;
(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知点,直线l与圆C:(x一1)2+(y一2)2=4相交于A,B两点,且OA⊥OB.
(1)若直线OA的方程为y=一3x,求直线OB被圆C截得的弦长;
(2)若直线l过点(0,2),求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了实现绿色发展,避免能源浪费,某市计划对居民用电实行阶梯收费.阶梯电价原则上以住宅(一套住宅为一户)的月用电量为基准定价,具体划分标准如表:
阶梯级别 | 第一阶梯电量 | 第二阶梯电量 | 第三阶梯电量 |
月用电量范围(单位:) |
从本市随机抽取了100户,统计了今年6月份的用电量,这100户中用电量为第一阶梯的有20户,第二阶梯的有60户,第三阶梯的有20户.
(1)现从这100户中任意选取2户,求至少1户用电量为第二阶梯的概率;
(2)以这100户作为样本估计全市居民的用电情况,从全市随机抽取3户,表示用电量为第二阶梯的户数,求的概率分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com