精英家教网 > 高中数学 > 题目详情
(2012•绵阳三模)在△ABC中,顶点A,B,C所对三边分别是a,b,c已知B(-1,0),C(1,0),且b,a,c成等差数列.
(I)求顶点A的轨迹方程;
(II) 设顶点A的轨迹与直线y=kx+m相交于不同的两点M、N,如果存在过点P(0,-
12
)的直线l,使得点M、N关于l对称,求实数m的取值范围.
分析:(I)由B(-1,0),C(1,0),且b,a,c成等差数列,可得|AC|+|AB|=4(定值),利用椭圆定义,可得顶点A的轨迹方程;
(II)由
y=kx+m
x2
4
+
y2
3
=1
消去y整理,利用韦达定理表示出中点坐标,再分类讨论,利用点M、N关于l对称,即可求实数m的取值范围.
解答:解:(I)由题知
a=2
b+c=2a
得b+c=4,即|AC|+|AB|=4(定值).
由椭圆定义知,顶点A的轨迹是以B、C为焦点的椭圆(除去左右顶点),且其长半轴长为2,半焦距为1,于是短半轴长为
3

∴顶点A的轨迹方程为
x2
4
+
y2
3
=1(y≠0)
.…(4分)
(II)由
y=kx+m
x2
4
+
y2
3
=1
消去y整理得(3+4k2)x2+8kmx+4(m2-3)=0.
∴△=(8km)2-4(3+4k2)×4(m2-3)>0,
整理得:4k2>m2-3.①
令M(x1,y1),N(x2,y2),则x1+x2=-
8km
3+4k2

设MN的中点P(x0,y0),则x0=
1
2
(x1+x2)=-
4km
3+4k2
y0=m+kx0=
3m
3+4k2
,…(7分)
i)当k=0时,由题知,m∈(-
3
,0)∪(0,
3
)
.…(8分)
ii)当k≠0时,直线l方程为y+
1
2
=-
1
k
x

由P(x0,y0)在直线l上,得
3m
3+4k2
+
1
2
=
4m
3+4k2
,∴2m=3+4k2.②
把②式代入①中可得2m-3>m2-3,解得0<m<2.
又由②得2m-3=4k2>0,解得m>
3
2

3
2
<m<2

验证:当(-2,0)在y=kx+m上时,得m=2k代入②得4k2-4k+3=0,k无解,即y=kx+m不会过椭圆左顶点.
同理可验证y=kx+m不过右顶点.
∴m的取值范围为(
3
2
,2).…(11分)
综上,当k=0时,m的取值范围为(-
3
,0)∪(0,
3
)
;当k≠0时,m的取值范围为(
3
2
,2).…(12分)
点评:本题考查椭圆的定义与标准方程,考查对称性,考查直线与椭圆的位置关系,正确表示中点坐标是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•绵阳三模)抛物线y=-x2的焦点坐标为
(0,-
1
4
(0,-
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)已知函数f(x)=Asin(wx+φ)(A>0,w>0,|φ|<
π
2
,x∈R)在一个周期内的图象如图所示.则y=f(x)的图象可由函数y=cosx的图象(纵坐标不变)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)已知正项等差数列{an}的前n项和为Sn,且S15=45,M为a5,a11的等比中项,则M的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)已知函数f(x)=
ax
+blnx+c(a>0)的图象在点(1,f(1))处的切线方程为x-y-2=0.
(I)用a表示b,c;
(II)若函数g(x)=x-f(x)在x∈(0,1]上的最大值为2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)某电视台有A、B两种智力闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为
1
2
,丙、丁两人各自闯关成功的概率均为
2
3

(I )求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;
(II) 记游戏A、B被闯关成功的总人数为ξ,求ξ的分布列和期望.

查看答案和解析>>

同步练习册答案