精英家教网 > 高中数学 > 题目详情
已知
(I)求f(x)在[0,π]上的最小值;
(II)已知a,b,c分别为△ABC内角A、B、C的对边,,且f(B)=1,求边a的长.
【答案】分析:(Ⅰ)将f(x)的解析式的第一项利用两角和与差的正弦函数公式化简,去括号整理后再利用特殊角的三角函数值及两角和与差的正弦公式化为一个角的正弦函数,根据x的范围,得出这个角的范围,利用正弦函数的图象与性质得出f(x)的值域,即可确定出f(x)的最小值;
(II)由f(B)=1,将x=B代入函数f(x)的解析式,根据正弦函数的图象与性质得到关于x的方程,根据B为三角形的内角,可得出B的度数,进而确定出sinB的值,由cosA的值,以及A为三角形的内家,利用同角三角函数间的基本关系求出sinA的值,再由b的值,利用正弦定理即可求出a的值.
解答:解:(Ⅰ)f(x)=sinx+cosx)-cosx
=sinx+cosx=sin(x+),
≤x+
∴x=π时,f(x)min=-
(II)∵f(B)=1,
∴x+=2kπ+,k∈Z,又B为三角形的内角,
∴B=
∵cosA=,∴sinA==
又b=5
由正弦定理得=,得a===8.
点评:此题考查了两角和与差的正弦函数公式,正弦函数的图象与性质,正弦函数的定义域与值域,同角三角函数间的基本关系,以及正弦定理,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(I)求f(x)的定义域;
(II)求f(x)的值域;
(III)设α的锐角,且数学公式f(α)的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省荆州市公安三中高三(上)数学积累测试卷10(解析版) 题型:解答题

已知函数
(I )求f(x)的最小正周期;
(Ⅱ)若将f(x)的图象按向量平移得到函数g(x)的图象,求函数g(x)在区间[0,π]上的单调区间及值域.

查看答案和解析>>

科目:高中数学 来源:2011年河北省衡水市冀州中学高考保温数学试卷(文科)(解析版) 题型:解答题

已知函数
(I)求f(x)最小正周期和单调递减区间;
(II)若上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年安徽省百校论坛高三第一次联考数学试卷(理科)(解析版) 题型:解答题

已知函数
(I)求f(x)最小正周期和单调递减区间;
(II)若上恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案