精英家教网 > 高中数学 > 题目详情
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换. 求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
分析:根据已知条件,欲求出矩阵M-1,可由已知直接写出M-1.设椭圆上任意一点(x0,y0),变换后的坐标(x0′,y0′),根据逆变换公式,知道之间的关系,代入,即可求出新曲线方程.
解答:解:∵M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换,
∴逆矩阵M-1是把坐标平面上的点的横坐标缩短到
1
2
倍,纵坐标缩短到
1
3
倍的伸压变换
M-1=
1
2
0
0
1
3
.(5分)
任意选取椭圆
x2
4
+
y2
9
=1
上的一点P(x0,y0),它在矩阵 M-1=
1
2
0
0
1
3

对应的变换下变为P'(x0′,y0′),则有
1
2
0
0
1
3
 
x0
y0
=
x
0
y
0
,故
x0=2
x
0
y0=3
y
0

又因为点P在椭圆
x2
4
+
y2
9
=1
上,所以x0'2+y0'2=1.
椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程为x2+y2=1.
点评:此题主要考查矩阵变换以及逆矩阵的求法问题,属于综合性的问题,计算比较简单,但在分析上有一定的难度,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在A,B,C,D四小题中只能选做2题,每题10分,共计20分.
A、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求证:PE是⊙O的切线.
B、设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
C、已知某圆的极坐标方程为:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(Ⅱ)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D、若关于x的不等式|x+2|+|x-1|≥a的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选做题】在A,B,C,D四小题中只能选做2题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.
21-1.(选修4-2:矩阵与变换)
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1在M-1的作用下的新曲线的方程.
21-2.(选修4-4:参数方程)
以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,
π
2
),若直线l过点P,且倾斜角为 
π
3
,圆C以M为圆心、4为半径.
(1)求直线l关于t的参数方程和圆C的极坐标方程;
(2)试判定直线l和圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-2 矩阵与变换】
设M是把坐标平面上的点P(1,1),Q(2,-1)分别变换成点P1(2,3),Q1(4,-3).
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设M是把坐标平面上的点的横坐标伸长为原来的4倍,纵坐标伸长为原来的3倍的伸压变换,则圆x2+y2=1在M的作用下的新曲线的方程是
x2
16
+
y2
9
=1
x2
16
+
y2
9
=1

查看答案和解析>>

同步练习册答案