精英家教网 > 高中数学 > 题目详情
设a∈R,满足
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)设△ABC三内角A,B,C所对边分别为a,b,c且,求f(x)在(0,B]上的值域.
【答案】分析:(Ⅰ)通过二倍角公式,以及,求出a的值,利用两角差的正弦函数化简函数的表达式,通过正弦函数的单调增区间,求函数f(x)的单调递增区间;
(Ⅱ)利用余弦定理化简,通过正弦定理求出,推出B的值,然后求f(x)在(0,B]上的值域.
解答:解:(Ⅰ)f(x)=asinxcosx-cos2x+sin2x=
,解得
因此


故函数f(x)=的单调递增区间(6分)
(Ⅱ)由余弦定理知:
即2acosB-ccosB=bcosC,
又由正弦定理知:2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA
,所以
时,,f(x)∈(-1,2]
故f(x)在(0,B]上的值域为(-1,2](12分)
点评:本题考查余弦定理,两角和与差的正弦函数,正弦函数的单调性,正弦定理个应用,考查转化思想与计算能力.
练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年福建省莆田一中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

设a∈R,满足=f(0),
(1)求函数f(x)的解析式;
(2)求函数f(x)在上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省莆田一中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

设a∈R,满足=f(0),
(1)求函数f(x)的解析式;
(2)求函数f(x)在上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省常州一中高三(上)11月练习数学试卷(理科)(解析版) 题型:解答题

设a∈R,满足
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)设△ABC三内角A,B,C所对边分别为a,b,c且,求f(x)在(0,B]上的值域.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省连云港市新海高级中学高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

设a∈R,满足
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)设△ABC三内角A,B,C所对边分别为a,b,c且,求f(x)在(0,B]上的值域.

查看答案和解析>>

同步练习册答案