精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax-
1
x
+b-(a+1)lnx,(a,b∈R),g(x)=-
2
e
x+
e
2

(Ⅰ)若函数f(x)在x=2处取得极小值0,求a,b的值;
(Ⅱ)在(Ⅰ)的条件下,求证:对任意x1x2∈[e,e2],总有f(x1)>g(x2);
(Ⅲ)求函数f(x)的单调递增区间.
分析:(I)利用
f(2)=0
f(2)=0
解出并检验即可得出;
(II)利用导数分别求出f(x)min和g(x)max,再证明f(x)min-g(x)max>0即可;
(III)先求出导数f′(x),再对a分类讨论即可得出.
解答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=a+
1
x2
-
a+1
x

由题意得
f′(2)=a+
1
4
-
a+1
2
=0
f(2)=2a-
1
2
+b-(a+1)ln2=0

a=
1
2
,b=
3
2
ln2-
1
2

经检验符合题意.
(Ⅱ)f′(x)=
1
2
+
1
x2
-
3
2x
=
x2-3x+2
2x2
=
(x-2)(x-1)
2x2
,当x∈[e,e2]时,f'(x)>0,
所以f(x)在[e,e2]上单调递增,所以f(x)min=f(e)=
e
2
-
1
e
+
3
2
ln2-2

g′(x)=-
2
e
,当x∈[e,e2]时,g'(x)<0,g(x)在[e,e2]上单调递减,所以     g(x)max=g(e)=
e
2
-2

因为f(x)min-g(x)max=
3
2
ln2-
1
e
>0

所以对任意x1x2∈[e,e2],总有f(x1)>g(x2).
(Ⅲ)f′(x)=
ax2-(a+1)x+1
x2
=
(ax-1)(x-1)
x2

(1)当a=0时,由f'(x)>0得,0<x<1;
(2)当a<0时,由f'(x)>0得,0<x<1;
(3)当a>0时,
(ⅰ)若0<a<1,由f'(x)>0得,0<x<1或x>
1
a

(ⅱ)若a=1,则f'(x)≥0恒成立,(在(0,1)和(1,+∞)上f'(x)>0,f′(1)=0),得x>0;
(ⅲ)若a>1,由f'(x)>0得,0<x<
1
a
或x>1.
综上所述,当a≤0时,函数f(x)的单调递增区间为(0,1);
当0<a<1时,函数f(x)的单调递增区间为(0,1)和(
1
a
,+∞)

当a=1时,函数f(x)的单调递增区间为(0,+∞);
当a>1时,函数f(x)的单调递增区间为(0,
1
a
)
和(1,+∞).
点评:熟练掌握利用导数研究函数的单调性、极值与最值、分类讨论的思想方法等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案