(四川卷理19)如,平面平面,
四边形与都是直角梯形,
,
(Ⅰ)证明:四点共面;
(Ⅱ)设,求二面角的大小;
【解1】:(Ⅰ)延长交的延长线于点,由得
延长交的延长线于
同理可得
故,即与重合
因此直线相交于点,即四点共面。
(Ⅱ)设,则,
取中点,则,又由已知得,平面
故,与平面内两相交直线都垂直。
所以平面,作,垂足为,连结
由三垂线定理知为二面角的平面角。
故所以二面角的大小
【解2】:由平面平面,,得平面,以为坐标原点,射线为轴正半轴,建立如图所示的直角坐标系
(Ⅰ)设,则
故,从而由点,得
故四点共面
(Ⅱ)设,则,
在上取点,使,则
从而
又
在上取点,使,则
从而
故与的夹角等于二面角的平面角, ,所以二面角的大小
【点评】:此题重点考察立体几何中四点共面问题和求二面角的问题,考察空间想象能力,几何逻辑推理能力,以及计算能力;
【突破】:熟悉几何公理化体系,准确推理,注意书写格式是顺利进行解法1的关键;在解法2中,准确的建系,确定点坐标,熟悉向量的坐标表示,熟悉空间向量的计算在几何位置的证明,在有关线段,角的计算中的计算方法是解题的关键。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com