精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为R的函数 f (x)的导函数为f'(x),且满足f'(x)﹣2f (x)>4,若 f (0)=﹣1,则不等式f(x)+2>e2x的解集为(
A.(0,+∞)
B.(﹣1,+∞)
C.(﹣∞,0)
D.(﹣∞,﹣1)

【答案】A
【解析】解:设F(x)= , 则F′(x)=
∵f(x)﹣2f′(x)﹣4>0,
∴F′(x)>0,即函数F(x)在定义域上单调递增,
∵f(0)=﹣1,∴F(0)=1,
∴不等式f(x)+2>e2x等价为不等式 >1等价为F(x)>F(0),
解得x>0,
故不等式的解集为(0,+∞),
故选:A.
【考点精析】通过灵活运用利用导数研究函数的单调性,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如果定义在R上的函数f(x)满足:对于任意x1≠x2 , 都有xlf(xl)+x2f(x2)≥xlf(x2)+x2f(xl),则称f(x)为“H函数”,给出下列函数: ①y=﹣x3+x+l;
②y=3x﹣2(sinx﹣cosx);
③y=l﹣ex
④f(x)=
⑤y=
其中“H函数”的个数有(
A.3个
B.2个
C.l个
D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)若存在x0∈[ ,e](e是自然对数的底数,e=2.71828…),使不等式2f(x0)≥g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在(0,+∞)的函数f(x)的导函数是f'(x),且x4f'(x)+3x3f(x)=ex ,则x>0时,f(x)(
A.有极大值,无极小值
B.有极小值,无极大值
C.既无极大值,又无极小值
D.既有极大值,又有极小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+2|﹣2|x﹣1|. (Ⅰ)求不等式f(x)≥﹣2的解集M;
(Ⅱ)对任意x∈[a,+∞),都有f(x)≤x﹣a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy 中,椭圆G的中心为坐标原点,左焦点为F1(﹣1,0),离心率e=
(1)求椭圆G 的标准方程;
(2)已知直线l1:y=kx+m1与椭圆G交于 A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆G交于C,D两点,且|AB|=|CD|,如图所示. ①证明:m1+m2=0;
②求四边形ABCD 的面积S 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(2,1)与Q关于原点O对称,直线PM,QM相交于点M,且它们的斜率之积是﹣ (Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过P作直线l交轨迹C于另一点A,求DPAO的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|x+3|.
(1)解不等式f(x)≥8;
(2)若不等式f(x)<a2﹣3a的解集不是空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|2x+2|.
(1)解不等式f(x)>5;
(2)若关于x的方程 =a的解集为空集,求实数a的取值范围.

查看答案和解析>>

同步练习册答案