精英家教网 > 高中数学 > 题目详情
2.已知f(x)=x2+(lga+2)x+lgb,且f(-1)=-2,f(x)≥2x(x∈R),求a+b的值.

分析 通过f(-1)=-2,推出a,b的关系,利用不等式f(x)≥2x对一切x∈R都成立,转化为判别式△≤0,进行求解即可.

解答 解:∵f(x)=x2+(lga+2)x+lgb,且f(-1)=-2,
∴f(-1)=1-(lga+2)+lgb=-2,
即lga-lgb=1,
即lg$\frac{a}{b}$=1,则$\frac{a}{b}$=10,即lga=1+lgb,
则f(x)=x2+(3+lgb)x+lgb,
若f(x)≥2x对一切x∈R都成立,
即x2+(3+lgb)x+lgb≥2x,对一切x∈R都成立,
即x2+(1+lgb)x+lgb≥0恒成立,
则判别式△=(1+lgb)2-4lgb≤0,
即(1-lgb)2≤0,
则1-lgb=0,即lgb=1,则b=10,a=10b=100,
则a+b=10+100=110,

点评 本题主要考查不等式恒成立问题,根据条件求出a,b的关系,以及利用不等式恒成立转化为一元二次不等式与判别式△的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,在正方体ABCD-A1B1C1D1中.求:
(1)BC1与AB1所成的角;
(2)求BD1与平面ABCD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\left\{\begin{array}{l}{1-\frac{1}{x},x>0}\\{{2}^{x}-4,x≤0}\end{array}\right.$.
(1)求f(1)的值;
(2)证明函数f(x)在(0,+∞)上单调递增;
(3)求f(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在正四棱锥P-ABCD中,底面ABCD是边长为1的正方形,O是AC与BD的交点,PO=1,M是PC的中点.
(1)设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,$\overrightarrow{AP}$=$\overrightarrow{c}$,用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$表示向量$\overrightarrow{BM}$;
(2)在如图的空间直角坐标系中,求向量$\overrightarrow{BM}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C:y2=2px(p>0)的顶点关于直线l:y=$\frac{1}{2}$x+$\frac{5}{4}$的对称点在抛物线C的准线l1上.
(1)求抛物线C的方程;
(2)设直线l2:3x-4y+7=0,在抛物线C求一点P,使得P到直线l1和l2的距离之和最小,并求最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知10x=4,10y=81,求10${\;}^{2x-\frac{y}{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点M(-5,0),N(0,5),P为椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1上一动点,则S△MNP的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在菱形ABCD中,A=60°,AB=$\sqrt{3}$,将△ABD沿BD折起到△PBD的位置,若二面角P-BD-C的大小为$\frac{2π}{3}$,则三棱锥P-BCD的外接球体积为(  )
A.$\frac{4}{3}$πB.$\frac{\sqrt{3}}{2}$πC.$\frac{7\sqrt{7}}{6}$πD.$\frac{7\sqrt{7}}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=($\frac{1}{3}$)x,关于x的不等式x2-2x+a<0的解集为(-1,3).
(1)求实数a的值;
(2)求不等式f(x2+a)<1的解集.

查看答案和解析>>

同步练习册答案