【题目】如图,在三棱柱中,分别是的中点.
(1)求证:平面;
(2)过点作一个截面,使平面平面,并证明.
科目:高中数学 来源: 题型:
【题目】如图,在同一个平面内,向量 , , 的模分别为1,1, , 与 的夹角为α,且tanα=7, 与 的夹角为45°.若 =m +n (m,n∈R),则m+n= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若椭圆的中心在原点,焦点在轴上,点是椭圆上的一点,在轴上的射影恰为椭圆的左焦点,与中心的连线平行于右顶点与上顶点的连线,且左焦点与左顶点的距离等于,试求椭圆的离心率及其方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-5:不等式选讲]
已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一种设备的单价为元,设备维修和消耗费用第一年为元,以后每年增加元(是常数).用表示设备使用的年数,记设备年平均费用为,即 (设备单价设备维修和消耗费用)设备使用的年数.
(Ⅰ)求关于的函数关系式;
(Ⅱ)当, 时,求这种设备的最佳更新年限.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列中,在直线.
(1)求数列{an}的通项公式;
(2)令,数列的前n项和为.
(ⅰ)求;
(ⅱ)是否存在整数λ,使得不等式(-1)nλ< (n∈N)恒成立?若存在,求出λ的取值的集合;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A,B为曲线C:y= 上两点,A与B的横坐标之和为4.(12分)
(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sin(ωx﹣ )+b(ω>0),且函数图象的对称中心到对称轴的最小距离为 ,当x∈[0, ]时,f(x)的最大值为1.
(1)求函数f(x)的解析式;
(2)将函数f(x)的图象向右平移 个单位长度得到函数g(x)图象,若g(x)﹣3≤m≤g(x)+3在x∈[0, ]上恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com