精英家教网 > 高中数学 > 题目详情
若椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
1
2
,右焦点为F(c,0),方程ax2+2bx+c=0的两个实数根分别是x1和x2,则点
P(x1,x2)到原点的距离为(  )
A、
2
B、
7
2
C、2
D、
7
4
分析:利用一元二次方程根与系数的关系求出 x1 +x2 和x1 •x2 的值,再利用椭圆的简单性质求出P(x1,x2)到原点的距离.
解答:解:由题意知  x1 +x2 =-
2b
a
=-2
a2-c2
a
,∴(x1+x22=4(1-e2)=3   ①,
x1 •x2 =
c
a
=
1
2
  ②,由①②解得 x12+x22=2,故P(x1,x2)到原点的距离为
x12+x22
=
2

故选 A.
点评:本题考查一元二次方程根与系数的关系,两点间的距离公式,椭圆的标准方程,以及椭圆的简单性质的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若椭圆
x2
a2
+y2=1(a>0)的一条准线经过抛物线y2=-8x的焦点,则该椭圆的离心率为(  )
A、
1
2
B、
1
3
C、
3
2
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆
x2
a2
+y2=1(a>0)
与双曲线
x2
2
-y2=1
有相同的焦点,则a=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西城区一模)双曲线C:
x2
2
-y2=1
的离心率为
6
2
6
2
;若椭圆
x2
a2
+y2=1(a>0)
与双曲线C有相同的焦点,则a=
2
2

查看答案和解析>>

科目:高中数学 来源:南京模拟 题型:单选题

若椭圆
x2
a2
+y2=1(a>0)的一条准线经过抛物线y2=-8x的焦点,则该椭圆的离心率为(  )
A.
1
2
B.
1
3
C.
3
2
D.
2
2

查看答案和解析>>

科目:高中数学 来源:西城区一模 题型:填空题

双曲线C:
x2
2
-y2=1
的离心率为______;若椭圆
x2
a2
+y2=1(a>0)
与双曲线C有相同的焦点,则a=______.

查看答案和解析>>

同步练习册答案