精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数,最大值与最小值的差为4,相邻两个最低点之间距离为π,且函数图象所有的对称中心都在y=f(x)图象的对称轴上.
(1)求f(x)的表达式;
(2)若,求的值;
(3)设,若恒成立,求实数m的取值范围.
【答案】分析:(1)由已知中已知定义在R上的函数,最大值与最小值的差为4,相邻两个最低点之间距离为π,我们易计算出A值,及最小正周期,进而求出ω值,再由函数图象所有的对称中心都在y=f(x)图象的对称轴上,求出φ值,即可得到f(x)的表达式;
(2)由,结合(1)中所求的函数解析式,可得,进而求出的值,然后根据两角差的余弦公式,即可求出答案.
(3)由恒成立,要以转化为函数恒成立问题,构造函数,求出其最值,即可得到答案.
解答:解:(1)依题意可知:A=2,T=π,与f(x)相差,即相差
所以
(舍),

(2)因为,即
因为,又,y=cosx在单调递增,
所以
所以,于是

(3)因为

于是4cos2x+mcosx+1≥0,得对于恒成立,
因为
故m≥-4.
点评:本题考查的知识点是由y=Asin(ωx+φ)的部分图象确定其解析式,函数恒成立问题,其中根据已知条件,计算出函数的解析式是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案