精英家教网 > 高中数学 > 题目详情

函数f(x)=log2|ax-1|的对称轴为x=2,则非零实数a的值是


  1. A.
    -2
  2. B.
    2
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:本题由于外函数不具备对称性,而内函数具有对称性,所以解题的关键是分析内函数的对称性.函数y=a|x-b|(a≠0)的对称轴为x=b,所以解题的切入点是将内函数的一次项系数化为1.
解答:(利用含绝对值符号函数的对称性)
y=log2|ax-1|=log2|a(x-)|,
对称轴为x=
=2
得a=
故选C.
点评:含绝对值符号的函数是分段函数的重要类型,而绝对值函数的对称性又是绝对值函数的重要考点,其处理步骤为:分析绝对值符号内函数的对称性,若为二次函数,则对称轴保持不变;若为一次函数,则将其一次项系数化为1,即化为y=a|x-b|(a≠0)的形式,其对称轴为x=b
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、设函数f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,则f(x12)+f(x22)+…f(x102)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是减函数,则实数a的范围是(  )
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log 2(x2-x-2)
(1)求f(x)的定义域;
(2)当x∈[3,4]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有三个命题:“①0<
1
2
<1.②函数f(x)=log 
1
2
x是减函数.③当0<a<1时,函数f(x)=logax是减函数”.当它们构成三段论时,其“小前提”是
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•茂名二模)设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的高调函数.现给出下列命题:
①函数f(x)=log 
1
2
x为(0,+∞)上的高调函数;
②函数f(x)=sinx为R上的高调函数;
③如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的高调函数,那么实数m的取值范围是[2,+∞);
其中正确的命题的个数是(  )

查看答案和解析>>

同步练习册答案