精英家教网 > 高中数学 > 题目详情
2.若幂函数f(x)=(m2-m-5)xm-1在区间(0,+∞)上是增函数,则实数m的值为3.

分析 因为只有y=xα型的函数才是幂函数,以及函数在x∈(0,+∞)上为增函数,列出不等式组求解即可.

解答 解:要使函数f(x)=(m2-m-5)xm-1是幂函数,且在x∈(0,+∞)上为增函数,
则$\left\{\begin{array}{l}m-1>0\\{m}^{2}-m-5=1\end{array}\right.$,解得:m=3.
故答案为:3.

点评 本题考查了幂函数的概念及其单调性,解答的关键是掌握幂函数定义及性质,幂函数在幂指数大于0时,在(0,+∞)上为增函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知集合A={x|0≤x≤4},B={x|x<a},
(1)当a=5时,求A∪B,A∩(∁RB);
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在矩形ABCD中,AB=1,BC=2,E为BC的中点,点F在DC边上,则$\overrightarrow{AE}•\overrightarrow{AF}$的最大值为(  )
A.3B.4C.5D.与F点的位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列各式的值.
(1)${({\frac{9}{4}})^{\frac{1}{2}}}+(9.6{)^0}-{({\frac{8}{27}})^{-\frac{1}{3}}}$;
(2)log28+lg25+lg4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知关于x的二次函数f(x)=ax2-4bx+1.设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)在区间[1,5]和[2,4]上分别取一个数,记为a,b,求方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1表示焦点在x轴上且离心率小于$\frac{\sqrt{3}}{2}$的椭圆的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x+1)=x2,则f(3)=(  )
A.9B.16C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数$y=\frac{{\sqrt{{x^2}-1}}}{x-1}$的定义域是(  )
A.{x|-1≤x<1}B.{x|x≤-1或x>1}C.{x|-1≤x≤1}D.{x|x≤-1或x≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若向量$\overrightarrow a=({1,0,z})$与向量$\overrightarrow b=({2,1,2})$的夹角的余弦值为$\frac{2}{3}$,则z=0,$|{\overrightarrow a-2\overrightarrow b}|$=$\sqrt{29}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某化工企业计划2015年底投入64万元,购入一套污水处理设备.该设备每年的运转费用是1.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.
(1)设该企业使用该设备x年的年平均污水处理费用为y(万元),求y=f(x)的解析式;
(2)为使该企业的年平均污水处理费用最低,问该企业几年后需要重新更换新的污水处理设备?

查看答案和解析>>

同步练习册答案