8£®ÒÑÖªA¡¢B¡¢CÊÇÖ±ÏßlÉϵIJ»Í¬µÄÈýµã£¬µãOÊÇÖ±ÏßlÍâÒ»µã£¬ÏòÁ¿$\overrightarrow{OA}$¡¢$\overrightarrow{OB}$¡¢$\overrightarrow{OC}$Âú×ã$\overrightarrow{OA}$-[2sin£¨2x-$\frac{¦Ð}{6}$£©]$\overrightarrow{OB}$-£¨$\frac{3}{2}$-y£©$\overrightarrow{OC}$=$\overrightarrow{0}$£¬¼Çy=f£¨x£©£®
£¨1£©Çóº¯Êýy=f£¨x£©µÄ½âÎöʽ¼°ËüµÄÖÜÆÚ£»
£¨2£©Èô¶ÔÈÎÒâx¡Ê[$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{3}$]£¬²»µÈʽf£¨x£©-2m£¾0ºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ $\overrightarrow{OA}$=[2sin£¨2x-$\frac{¦Ð}{6}$£©]$\overrightarrow{OB}$+£¨y-$\frac{3}{2}$£©$\overrightarrow{OC}$£¬ÔÙ¸ù¾ÝA¡¢B¡¢CÊÇÖ±ÏßlÉϵIJ»Í¬µÄÈýµã£¬¿ÉµÃ2sin£¨2x-$\frac{¦Ð}{6}$£©+y-$\frac{3}{2}$=1£¬¼´y=f£¨x£©µÄ½âÎöʽ£¬´Ó¶øÇóµÃf£¨x£©µÄÖÜÆÚ£®
£¨2£©¸ù¾Ýx¡Ê[$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{3}$]£¬ÀûÓÃÕýÏÒº¯ÊýµÄ¶¨ÒåÓòºÍÖµÓòÇóµÃf£¨x£©µÄ×îСֵΪ$\frac{1}{2}$£¬¿ÉµÃ$\frac{1}{2}$-2m£¾0£¬ÔÙ½âÖ¸Êý²»µÈʽ£¬ÇóµÃmµÄ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉ$\overrightarrow{OA}$-[2sin£¨2x-$\frac{¦Ð}{6}$£©]$\overrightarrow{OB}$-£¨$\frac{3}{2}$-y£©$\overrightarrow{OC}$=$\overrightarrow{0}$£¬¿ÉµÃ $\overrightarrow{OA}$=[2sin£¨2x-$\frac{¦Ð}{6}$£©]$\overrightarrow{OB}$+£¨y-$\frac{3}{2}$£©$\overrightarrow{OC}$£¬
ÔÙ¸ù¾ÝA¡¢B¡¢CÊÇÖ±ÏßlÉϵIJ»Í¬µÄÈýµã£¬¿ÉµÃ2sin£¨2x-$\frac{¦Ð}{6}$£©+y-$\frac{3}{2}$=1£¬
¼´ y=f£¨x£©=$\frac{5}{2}$-2sin£¨2x-$\frac{¦Ð}{6}$£©£¬¹Êf£¨x£©µÄÖÜÆÚΪ$\frac{2¦Ð}{2}$=¦Ð£®
£¨2£©¶ÔÈÎÒâx¡Ê[$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{3}$]£¬2x-$\frac{¦Ð}{6}$¡Ê[$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{2}$]£¬¡àsin£¨2x-$\frac{¦Ð}{6}$£©¡Ê[$\frac{1}{2}$£¬1]£¬
¡àf£¨x£©=$\frac{5}{2}$-2sin£¨2x-$\frac{¦Ð}{6}$£©¡Ê[$\frac{1}{2}$£¬$\frac{3}{2}$]£®
ÔÙ¸ù¾Ý²»µÈʽf£¨x£©-2m£¾0ºã³ÉÁ¢£¬¿ÉµÃ$\frac{1}{2}$-2m£¾0£¬¡àm£¼-1£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÈýµã¹²ÏßµÄÐÔÖÊ£¬ÕýÏÒº¯ÊýµÄÖÜÆÚÐÔ£¬ÕýÏÒº¯ÊýµÄ¶¨ÒåÓòºÍÖµÓò£¬Ö¸Êý²»µÈʽµÄ½â·¨£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=x3-3x£®
£¨1£©ÌÖÂÛf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èôº¯Êýg£¨x£©=f£¨x£©-mÔÚ$[{-\frac{3}{2}£¬3}]$ÉÏÓÐÈý¸öÁãµã£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èô²»µÈʽ×é$\left\{\begin{array}{l}x+y-2¡Ü0\\ x+2y-2¡Ý0\\ x-y+2m¡Ý0\end{array}\right.$±íʾµÄƽÃæÇøÓòΪÈý½ÇÐΣ¬ÇÒÆäÃæ»ýµÈÓÚ12£¬ÔòmµÄֵΪ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÇóÍÖÔ²µÄÀëÐÄÂÊ£º
£¨1£©³¤Ö᳤ºÍ¶ÌÖ᳤·Ö±ðΪ26ºÍ24£»
£¨2£©Ò»½¹µã×ø±êΪ£¨5£¬0£©£¬¶ÌÖ᳤Ϊ6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑ֪˫ÇúÏßx2Ò»y2=1£®
£¨1£©ÈôÖ±Ïßl£ºy=$\frac{1}{2}$x-b½»Ë«ÇúÏßÓÚA£¬BÁ½µã£¬ÇÒ|AB|=$\frac{2\sqrt{35}}{3}$£®ÇóÖ±Ïßl·½³Ì£º
£¨2£©ÇóÒÔ¶¨µãM£¨2£¬1£©ÎªÖеãµÄÏÒËùÔÚÖ±Ïß·½³Ì£º
£¨3£©Ë¼¿¼ÒÔ¶¨µãN£¨1£¬1£©ÎªÖе㣼ÏÒ´æÔÚÂ𣿣¨ÊýÐνáºÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®¶ÔÓÚº¯Êýy=lg$\frac{x}{100}$µÄͼÏó¸ø³öÈý¸öÃüÌ⣺ÏÂÊöÃüÌâÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ£¨1£©£¬£¨2£©£¬£¨3£©£®
£¨1£©´æÔÚÖ±Ïßl1£¬º¯Êýy=lg$\frac{x}{100}$µÄͼÏóÓ뺯Êýy=100•10xµÄͼÏó¹ØÓÚÖ±Ïßl1¶Ô³Æ£»
£¨2£©´æÔÚÖ±Ïßl2£¬º¯Êýy=lg$\frac{x}{100}$µÄͼÏóÓ뺯Êýy=log0.1$\frac{x}{100}$µÄͼÏó¹ØÓÚÖ±Ïßl2¶Ô³Æ£»
£¨3£©´æÔÚÖ±Ïßl3£¬º¯Êýy=lg$\frac{x}{100}$µÄͼÏóÓ뺯Êýy=log0.1xµÄͼÏó¹ØÓÚÖ±Ïßl3¶Ô³Æ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Ä³³ÇÊÐÏÖÓÐÈË¿Ú100Íò£¬¸ù¾Ý×î½ü20ÄêµÄͳ¼Æ×ÊÁÏ£¬Õâ¸ö³ÇÊеÄÈË¿ÚµÄÄê×ÔÈ»Ôö³¤ÂÊΪ0.8%£¬°´ÕÕÕâ¸öÔö³¤ÂʼÆË㣬51ÄêºóÕâ¸ö³ÇÊеÄÈË¿ÚÔ¤¼ÆÓÐ150Íò£¨ÓôúÊýʽ±íʾ£¬²¢»¯¼ò£¬¾«È·µ½1Ä꣩

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{£¨a+1£©^{x}-1£¬x¡Ü1}\\{1+lo{g}_{a}x£¬x£¾1}\end{array}\right.$£¬£¨a£¾0ÇÒa¡Ù1£©£®
£¨1£©µ±a=2ʱ£¬Çóº¯Êýf£¨x£©µÄÁãµã£»
£¨2£©Èôº¯Êýf£¨x£©µÄÒ»¸öÁãµãΪ2£¬ÇóʵÊýa£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Ì½ÌÖÏÂÁи÷ʽÖУ¬½Çx·Ö±ðΪºÎֵʱ£¬Ê½×ÓʧȥÒâÒ壺
£¨1£©tanx+$\frac{1}{sinx}$£»
£¨2£©$\frac{\sqrt{tanx}}{sinx}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸