精英家教网 > 高中数学 > 题目详情
13.由y=$\frac{1}{x}$-2,y=0,x=2所对应的曲线围成的封闭图形的面积为(  )
A.ln2-1B.1-ln2C.2ln2-3D.3-2ln2

分析 求出积分的上限和下限,利用积分的几何意义进行求解即可.

解答 解:由y=$\frac{1}{x}$-2=0,解得x=$\frac{1}{2}$,
则对应封闭曲线的面积S=${∫}_{\frac{1}{2}}^{2}$[0-($\frac{1}{x}$-2)]dx=(2x-lnx)|${\;}_{\frac{1}{2}}^{2}$=4-ln2-(1-ln$\frac{1}{2}$)=3-2ln2,
故选:D.

点评 本题主要考查曲线面积的求解,利用积分的几何意义求积分是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若$\frac{2x-y}{x+y}=\frac{2}{3}$,则$\frac{x}{y}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知矩形ABCD,BC⊥平面ABE,F为CE的中点.
(1)求证:直线AE∥平面BDF;
(2)若AE=BE=$\frac{\sqrt{2}}{2}$AB,求证:AE⊥平面BCE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知公比为q的等比数列{an}中,a5+a9=$\frac{1}{2}$q,则a6(a2+2a6+a10)的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的可导函数为f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+3)为偶函数,f(6)=1,则不等式f(x)<ex的解集为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示的坐标平面的可行域内(阴影部分且包括边界),若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a的值为(  )
A.$\frac{1}{4}$B.$\frac{3}{5}$C.4D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C:x2+y2-2y-4=0.
(1)求过点P($\sqrt{5}$,0)与圆C相切的直线方程;
(2)若过点Q(1,1)的直线l1,与圆C相交所得弦长为4,求直线l1的方程;
(3)若由直线l2:4x+3y-24=0上的动点M向圆C作切线,求所得切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求函数f(x)=-4x2+4ax-4a-a2在区间[0,1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若${C}_{n}^{n-2}$=28,则n=8.

查看答案和解析>>

同步练习册答案