精英家教网 > 高中数学 > 题目详情
已知曲线C的方程是(x-
|x|
x
2+(y-
|y|
y
2=8,若点P,Q在曲线C上,则|PQ|的最大值是(  )
A、6
2
B、8
2
C、8
D、6
考点:曲线与方程,两点间距离公式的应用
专题:计算题,直线与圆
分析:先分类讨论化简方程,再根据方程对应的曲线,即可得到结论.
解答: 解:当x>0,y>0时,方程是(x-1)2+(y-1)2=8;
当 x>0,y<0 时,方程是(x-1)2+(y+1)2=8;
当 x<0,y>0 时,方程是(x+1)2+(y-1)2=8;
当 x<0,y<0 时,方程是(x+1)2+(y+1)2=8
曲线C既是中心对称图形,又是轴对称图形,对称中心为(0,0),对称轴为x,y轴,点P,Q在曲线C上,当且仅当P,Q与圆弧所在圆心共线时取得最大值,|PQ|的最大值是圆心距加两个半径,即6
2

故选:A.
点评:本题考查曲线与方程的概念,体现分类讨论、数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两点A(1,2),B(3,1)到直线l距离分别是
2
5
-
2
,则满足条件的直线l共有(  )条.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

集合{x|x≤-1}用区间形式表示正确的是(  )
A、(-∞,-1]
B、(-∞,-1]
C、[-1,+∞)
D、(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等腰梯形PDCB中(如图),PB=3,DC=1,PD=BC=
2
,A为PB边上一点,且PA=1,将△PAD沿AD折起,使面PAD⊥面ABCD.
(Ⅰ)证明:平面PAD⊥平面PCD;
(Ⅱ)试在棱PB上确定一点M,使截面AMC把该几何体分成的两部分PDCMA与MACB的体积的比为2:1;
(Ⅲ)在M满足(Ⅱ)的情况下,求二面角M-AC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点
(1)求证:QP⊥AC;
(2)当二面角Q-AC-P的大小为120°时,求QB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
12
-
y2
4
=1的渐近线与圆(x-3)2+y2=r2(r>0)相切,则r等于(  )
A、
3
2
B、
6
2
C、
3
4
D、
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示(单位:cm),则该几何体的体积为
 
cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

在建立两个变量y与x的回归模型中,分别选择了4个不同模型,模型1-4的R2分别为0.98,0.80,0.50,0.25,则其中拟合得最好的模型是(  )
A、模型1B、模型2
C、模型3D、模型4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在复平面内,复数z1和z2对应的点分别是A和B,则
z2
z1
等于(  )
A、1+2iB、2+i
C、-1-2iD、-2+i

查看答案和解析>>

同步练习册答案