精英家教网 > 高中数学 > 题目详情
13.求下列函数的周期:
(1)y=sin3x,x∈R;
(2)y=3sin$\frac{x}{4}$,x∈R;
(3)y=2sin(2x-$\frac{π}{6}$).

分析 由条件利用函数y=Asin(ωx+φ)的周期为$\frac{2π}{ω}$,得出结论.

解答 解:(1)函数y=sin3x,x∈R的最小正周期为$\frac{2π}{3}$;
(2)函数y=3sin$\frac{x}{4}$,x∈R的最小正周期为$\frac{2π}{\frac{1}{4}}$=8π;
(3)函数y=2sin(2x-$\frac{π}{6}$)的最小正周期为$\frac{2π}{2}$=π.

点评 本题主要考查函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为$\frac{2π}{ω}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,点M在AB上,且AM:MB=1:2,E为PB的中点.
(1)求证:CE∥平面ADP;
(2)求证:平面PAD⊥平面PAB;
(3)棱AP上是否存在一点N,使得平面DMN⊥平面ABCD,若存在,求出$\frac{AN}{NP}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.化简求值:
(1)${π^0}-{(\sqrt{8})^{\frac{2}{3}}}+{0.0081^{\frac{1}{4}}}+\sqrt{2}•\root{3}{2}•\root{6}{2}$.
(2)(lg5)2+lg2•lg50+e2ln2+log28.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的定义域和值域.
(1)y=f(x)=log3(x2-3x-4);
(2)y=log3(x2+4x+7).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.曲线y=2x3与直线x=0,x=1及x轴所围成的平面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=-cos(x+$\frac{π}{3}$)+2按向量$\overrightarrow{a}$平移所得图象的解析式为y=f(x),当y=f(x)为奇函数,向量$\overrightarrow{a}$可以是(-$\frac{π}{6}$,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点为F(-c,0),F′(c,0),c>0,过点F且平行于双曲线渐近线的直线与抛物线y2=4cx交于点P,若点P在以FF′为直径的圆上,则$\frac{{b}^{2}}{{a}^{2}}$=$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在-180°~360°范围内,与2000°角终边相同的角为200°和-160°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知当t=n时,f(t)=t+$\frac{36}{t}$(t>0)取得最小值,则二项式(x-$\frac{1}{x}$)n的展开式中x2的系数为15.

查看答案和解析>>

同步练习册答案