精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)求函数f(x)的定义域;
(2)求函数f(x)的单调区间;
(3)问是否存在实数a,使得不等式f(x)>a恒成立.若存在,则求实数a的取值范围,否则说明理由.

解:(1)由需满足:
解得x>0且x≠1.
故f(x)的定义域为{x|x>0且x≠1}.
(2)对

=
=
=


则g(t)>g(1)=0(t>1);g(t)<g(1)=0(0<t<1).
因此:x>1时,f'(x)>0;0<x<1时,f'(x)<0.
∴f(x)在(1,+∞)上递增,在(0,1)上递减.…(10分)
(3)由(2)可知f(x)在(0,1)上递减,在(1,+∞)上递增.


=(lnx)|x=1+0-2ln2=1-2ln2,
从而f(x)>1-2ln2恒成立.
故a≤1-2ln2.…(14分)
分析:(1)求函数f(x)的定义域,由函数的解析知,解不等式组解出不等式的解集,即是所求的定义域;
(2)求函数f(x)的单调区间,由解析式的形式知宜先对函数进行求导,再由导数解出函数f(x)的单调区间;
(3)由(2)中知函数的单调性,利用单调性求出函数的最小值,令参数小于此最小值,即为所求的参数的取值范围.
点评:本题考查导数在最大值与最小值问题中的应用,解题的关键是利用导数研究出函数的单调性,判断出函数的最值,本题第三小题是一个恒成立的问题,恒成立的问题一般转化最值问题来求解,本题即转化为用单调性求函数在闭区间上的最值的问题,求出最值再判断出参数的取值.本题运算量过大,解题时要认真严谨,避免变形运算失误,导致解题失败.本题中解析式在x=1处无解,故采取了极限的方法求出自变量在此点时的函数值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=
x2-1,x<-1
|x|+1,-1≤x≤1
3x
+3,x>1
编写一程序求函数值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省青岛市高三3月统一质量检测考试(第二套)理科数学试卷(解析版) 题型:解答题

已知函数

1的最

2当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题

(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。

已知函数

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界函数值,求实数的取值范围;

(3)若,求函数上的上界T的取值范围。

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间数学公式上的函数值的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省徐州市铜山县棠张中学高三(上)周练数学试卷(理科)(11.3)(解析版) 题型:解答题

已知函数
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间上的函数值的取值范围.

查看答案和解析>>

同步练习册答案