精英家教网 > 高中数学 > 题目详情
设{an}是一个公差为d(d≠0)的等差数列,它的前10项和S10=110且a1,a2,a4成等比数列,求公差d的值和数列{an}的通项公式.
分析:先分别用a1和d表示出a2和a4,进而根据等比中项的性质求得a1和d的关系,代入到S10的表达式中,求得a1和d,则数列的通项公式可得.
解答:解:a2=a1+d  a4=a1+3d
(a22=a1×a4
即(a1+d)2=a1(a1+3d)
整理得a1d=d2
∵d≠0
∴a1=d
S10=10a1+
1
2
×10×9×d=10a1+45d=55a1=110
∴d=a1=2
∴an=a1+(n-1)d=2n
答:公差d=2,an=2n.
点评:本题主要考查了等差数列和等比数列的性质.解题的关键是熟练掌握等差数列和等比数列的相关公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}是一个公差为d(d>0)的等差数列.若
1
a1a2
+
1
a2a3
+
1
a3a4
=
3
4
,且其前6项的和S6=21,则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是一个公差为1的等差数列,且a1+a2+a3+…+a98=137,则a2+a4+a6+…a98=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是一个公差为d(d≠0)的等差数列,它的前n项和为Sn,S10=110且a1,a2,a4成等比数列.
(Ⅰ)证明a1=d;
(Ⅱ)求公差d的值和数列{an}的前n项和Sn
(Ⅲ)设bn=
1Sn
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封一模)设{an}是一个公差为2的等差数列,a1,a2,a4成等比数列.
(Ⅰ)求数列an的通项公式an
(Ⅱ)数列{bn}满足bn=n•2an,设{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)设{an}是一个公差为2的等差数列,a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)数列{bn}满足bn=2an,求b1•b2•…•bn(用含n的式子表示).

查看答案和解析>>

同步练习册答案