精英家教网 > 高中数学 > 题目详情

下列命题:① 设是非零实数,若,则;② 若,则;③ 函数的最小值是2;④若是正数,且,则有最小值16.其中正确命题的序号是                

 

【答案】

②  ④ 

【解析】根部不等式的性质,可知命题1不成立,命题2,满足倒数性质,可知成立,

命题3函数的最小值娶不到等号,不能为2;命题4成立,故填写②  ④

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设V是已知平面M上所有向量的集合,对于映射f:V→V,a∈V,记a的象为f(a).若映射f:V→V满足:对所有a、b∈V及任意实数λ,μ都有f(λa+μb)=λf(a)+μf(b),则f称为平面M上的线性变换.现有下列命题:
①设f是平面M上的线性变换,a、b∈V,则f(a+b)=f(a)+f(b);
②若e是平面M上的单位向量,对a∈V,设f(a)=a+e,则f是平面M上的线性变换;
③对a∈V,设f(a)=-a,则f是平面M上的线性变换;
④设f是平面M上的线性变换,a∈V,则对任意实数k均有f(ka)=kf(a).
其中的真命题是
 
(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设V是已知平面M上所有向量的集合,对于映射f:V→V,
a
∈V
,记
a
的象为f(
a
)
.若映射f:V→V满足:对所有
a
b
∈V
及任意实数λ,μ都有f(λ
a
b
)=λf(
a
)+μf(
b
)
,则f称为平面M上的线性变换.现有下列命题:
①设f是平面M上的线性变换,则f(
0
)=
0

②对
a
∈V
f(
a
)=2
a
,则f是平面M上的线性变换;
③若
e
是平面M上的单位向量,对
a
∈V
f(
a
)=
a
-
e
,则f是平面M上的线性变换;
④设f是平面M上的线性变换,
a
b
∈V
,若
a
b
共线,则f(
a
),f(
b
)
也共线.
其中真命题是
 
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:四川 题型:填空题

设V是已知平面M上所有向量的集合,对于映射f:V→V,a∈V,记a的象为f(a).若映射f:V→V满足:对所有a、b∈V及任意实数λ,μ都有f(λa+μb)=λf(a)+μf(b),则f称为平面M上的线性变换.现有下列命题:
①设f是平面M上的线性变换,a、b∈V,则f(a+b)=f(a)+f(b);
②若e是平面M上的单位向量,对a∈V,设f(a)=a+e,则f是平面M上的线性变换;
③对a∈V,设f(a)=-a,则f是平面M上的线性变换;
④设f是平面M上的线性变换,a∈V,则对任意实数k均有f(ka)=kf(a).
其中的真命题是______(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源:2010年北京市人大附中高三数学标准化试卷(02)(解析版) 题型:解答题

设V是已知平面M上所有向量的集合,对于映射f:V→V,a∈V,记a的象为f(a).若映射f:V→V满足:对所有a、b∈V及任意实数λ,μ都有f(λa+μb)=λf(a)+μf(b),则f称为平面M上的线性变换.现有下列命题:
①设f是平面M上的线性变换,a、b∈V,则f(a+b)=f(a)+f(b);
②若e是平面M上的单位向量,对a∈V,设f(a)=a+e,则f是平面M上的线性变换;
③对a∈V,设f(a)=-a,则f是平面M上的线性变换;
④设f是平面M上的线性变换,a∈V,则对任意实数k均有f(ka)=kf(a).
其中的真命题是    (写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源:2009年四川省高考数学试卷(理科)(解析版) 题型:解答题

设V是已知平面M上所有向量的集合,对于映射,记的象为.若映射f:V→V满足:对所有及任意实数λ,μ都有,则f称为平面M上的线性变换.现有下列命题:
①设f是平面M上的线性变换,则
②对,则f是平面M上的线性变换;
③若是平面M上的单位向量,对,则f是平面M上的线性变换;
④设f是平面M上的线性变换,,若共线,则也共线.
其中真命题是    (写出所有真命题的序号)

查看答案和解析>>

同步练习册答案