精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,ABCD是菱形,PA⊥平面ABCD

(1)求证:BD⊥PC;
(2)若平面PBC与平面PAD的交线为l,求证:BC∥l.

【答案】
(1)证明:连结AC、BD,

∵在四棱锥P﹣ABCD中,ABCD是菱形,PA⊥平面ABCD,

∴BD⊥AC,BD⊥PA,

∵PA∩AC=A,∴BD⊥平面PAC,

∵PC平面PAC,∴BD⊥PC


(2)证明:∵BC∥AD,BC面PAD,AD面PAD,

∴BC∥面PAD.

∵平面PBC与平面PAD的交线为l,

∴BC∥l.


【解析】(1)根据线面垂直的性质证明BD⊥平面PAC即可.(2)根据线面平行的性质定理证明BC∥平面PAD即可.
【考点精析】解答此题的关键在于理解棱锥的结构特征的相关知识,掌握侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1﹣50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮测试的成绩大于或等于80分视为优秀,小于80分视为不优秀,如表是甲、乙两人分别抽取的样本数据: 甲抽取的样本数据

编号

2

7

12

17

22

27

32

37

42

47

性别

投篮成 绩

90

60

75

80

83

85

75

80

70

60

乙抽取的样本数据

编号

1

8

10

20

23

28

33

35

43

48

性别

投篮成 绩

95

85

85

70

70

80

60

65

70

60

(Ⅰ)在乙抽取的样本中任取3人,记投篮优秀的学生人数为X,求X的分布列和数学期望.
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?

优秀

非优秀

合计

合计

10

(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:

P(K2≥k)

0.15

0.10

0.05

0.010

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数,对任意,均有恒成立.下列说法:

的周期为

②若为常数)的图像关于直线对称,则

③若,则必有

④已知定义在上的函数对任意均有成立,且当时, 又函数为常数),若存在使得成立,则的取值范围是.其中说法正确的是____.(填写所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx,g(x)= ,直线l:y=(k﹣3)x﹣k+2
(1)函数f(x)在x=e处的切线与直线l平行,求实数k的值
(2)若至少存在一个x0∈[1,e]使f(x0)<g(x0)成立,求实数a的取值范围
(3)设k∈Z,当x>1时f(x)的图象恒在直线l的上方,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是等差数列,数列{an}的前n项和为Sn , {bn}是各项都为正数的等比数列,且a1=b1=1,a3+b2=7,S2+b2=6 (Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列{anbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在R上定义运算:xy=x(1﹣y),若不等式(x﹣a)(x﹣b)>0的解集是(2,3),则a+b的值为(
A.1
B.2
C.4
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxcosx﹣2cos2x. (Ⅰ)求f( );
(Ⅱ)求f(x)的最大值和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其它费用组成,已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其它费用为每小时800元,且该货轮的最大航行速度为50海里/小时.
(1)请将从甲地到乙地的运输成本y(元)表示为航行速度x(海里/小时)的函数;
(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?

查看答案和解析>>

同步练习册答案