【题目】已知函数(, ).
(1)若的图象在点处的切线方程为,求在区间上的最大值和最小值;
(2)若在区间上不是单调函数,求的取值范围.
【答案】(1)最大值为8,最小值为(2)
【解析】试题分析:(1)先根据切线方程为x+y﹣3=0利用导数的几何意义求出a值,再研究闭区间上的最值问题,先求出函数的极值,比较极值和端点处的函数值的大小,最后确定出最大值与最小值;
(2)由题意得:函数f(x)在区间(﹣1,1)不单调,所以函数f′(x)在(﹣1,1)上存在零点.再利用函数的零点的存在性定理得:f′(﹣1)f′(1)<0.由此不等式即可求得a的取值范围.
试题解析:
(1)最大值为8,最小值为;(2) .
(1)∵在上,∴,
∵点在的图象上,∴,
又,∴,
∴,解得,
∴, ,
由可知和是的极值点.
∵, , , ,
∴在区间上的最大值为8,最小值为
(2)因为函数在区间上不是单调函数,所以函数在上存在零点.
而的两根为, ,
若, 都在上,则解集为空集,这种情况不存在;
若有一个根在区间上,则或,
∴
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax-lnx,a∈R.
(1)当a=1时,求曲线f(x)在点(2,f(2))处的切线方程;
(2)是否存在实数a,使f(x)在区间(0,e]的最小值是3,若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知无穷数列{an},a1=1,a2=2,对任意n∈N* , 有an+2=an , 数列{bn}满足bn+1﹣bn=an(n∈N*),若数列 中的任意一项都在该数列中重复出现无数次,则满足要求的b1的值为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1).
(1)求a,b的值;
(2)求f(log2x)的最小值及相应x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前项和为Sn , 若点An(n, )在函数f(x)=﹣x+c的图像上运动,其中c是与x无关的常数且a1=3.
(1)求数列{an}的通项公式;
(2)设bn=tanan+1tanan , tan195+tan3=atan2,求数列{bn}的前99项和(用含a的式子表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方体的棱长为1,线段上有两个动点,则下列结论中正确结论的序号是__________.
①;
②直线与平面所成角的正弦值为定值;
③当为定值,则三棱锥的体积为定值;
④异面直线所成的角的余弦值为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点P在正方体ABCD﹣A1B1C1D1的表面上运动,且P到直线BC与直线C1D1的距离相等,如果将正方体在平面内展开,那么动点P的轨迹在展开图中的形状是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com