精英家教网 > 高中数学 > 题目详情
17.在平面直角坐标系xOy中,已知圆C经过A(0,2),O(0,0),D(t,0)(t>0)三点,M是线段AD上的动点,l1,l2是过点B(1,0)且互相垂直的两条直线,其中l1交y轴于点E,l2交圆C于P、Q两点.
(1)若t=|PQ|=6,求直线l2的方程;
(2)若t是使|AM|≤2|BM|恒成立的最小正整数,求三角形EPQ的面积的最小值.

分析 (1)求出圆心坐标与半径,设直线l2的方程y=k(x-1),利用PQ=6,可得圆心到直线的距离d=$\frac{|2k-1|}{\sqrt{{k}^{2}+1}}$=$\sqrt{10-9}$,即可求直线l2的方程;
(2)设M(x,y),由点M在线段AD上,得2x+ty-2t=0,由AM≤2BM,得(x-$\frac{4}{3}$)2+(y+$\frac{2}{3}$)2≥$\frac{20}{9}$,依题意,线段AD与圆(x-$\frac{4}{3}$)2+(y+$\frac{2}{3}$)2=$\frac{20}{9}$至多有一个公共点,故$\frac{{|{\frac{8}{3}-\frac{8}{3}t}|}}{{\sqrt{4+{t^2}}}}≥\frac{{2\sqrt{5}}}{3}$,由此入手能求出△EPQ的面积的最小值.

解答 解:(1)由题意,圆心坐标为(3,1),半径为$\sqrt{10}$,则
设直线l2的方程y=k(x-1),即kx-y-k=0,
∴圆心到直线的距离d=$\frac{|2k-1|}{\sqrt{{k}^{2}+1}}$=$\sqrt{10-9}$,
∴k=0或$\frac{4}{3}$,(3分)
当k=0时,直线l1与y轴无交点,不合题意,舍去.
∴k=$\frac{4}{3}$时直线l2的方程为4x-3y-4=0.(6分)
(2)设M(x,y),由点M在线段AD上,得$\frac{x}{t}+\frac{y}{2}=1$,2x+ty-2t=0.
由AM≤2BM,得(x-$\frac{4}{3}$)2+(y+$\frac{2}{3}$)2≥$\frac{20}{9}$.(8分)
依题意知,线段AD与圆(x-$\frac{4}{3}$)2+(y+$\frac{2}{3}$)2=$\frac{20}{9}$至多有一个公共点,
故$\frac{{|{\frac{8}{3}-\frac{8}{3}t}|}}{{\sqrt{4+{t^2}}}}≥\frac{{2\sqrt{5}}}{3}$,解得$t≤\frac{{16-10\sqrt{3}}}{11}$或t≥$\frac{16+10\sqrt{3}}{11}$.
因为t是使AM≤2BM恒成立的最小正整数,所以t=4.
所以圆圆C的方程为(x-2)2+(y-1)2=5.
①当直线l2:x=1时,直线l1的方程为y=0,此时,SDEPQ=2;(10分)
②当直线l2的斜率存在时,设l2的方程为y=k(x-1),k≠0,
则l1的方程为y=-$\frac{1}{k}$(x-1),点E(0,$\frac{1}{k}$),∴BE=$\sqrt{1+\frac{1}{{k}^{2}}}$,
又圆心到l2的距离为$\frac{|k+1|}{\sqrt{1+{k}^{2}}}$,
∴PQ=2$\sqrt{\frac{4{k}^{2}-2k+4}{1+{k}^{2}}}$,
∴S△EPQ=$\frac{1}{2}$•$\sqrt{1+\frac{1}{{k}^{2}}}$•2$\sqrt{\frac{4{k}^{2}-2k+4}{1+{k}^{2}}}$=$\sqrt{4(\frac{1}{k}-\frac{1}{4})^{2}+\frac{15}{4}}$≥$\frac{\sqrt{15}}{2}$.
∵$\frac{\sqrt{15}}{2}$<2,
∴(S△EPQmin=$\frac{\sqrt{15}}{2}$.(14分)

点评 本题考查直线方程,考查三角形面积的最小值的求法,确定三角形面积是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知△ABC的顶点坐标分别是A(5,1),B(1,1),C(1,3),则△ABC的外接圆方程为(  )
A.(x+3)2+(y+2)2=5B.(x+3)2+(y+2)2=20C.(x-3)2+(y-2)2=20D.(x-3)2+(y-2)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥0\\ x-2y+2≥0\\ x-y≤0\end{array}\right.$,则z=2x-y的最大值为(  )
A.-2B.-1C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)是定义在R上的偶函数,已知x≥0时,f(x)=x2-2x
(1)求函数y=f(x)的解析式;
(2)画出f(x)的图象的草图,并由图象直接写出函数f(x)的单调递增区间;
(3)当函数y=f(x)-K恰有4个零点时,直接写出K的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)是奇函数,且当x≥0时,f(x)=x(1+x),则f(-2)=(  )
A.-6B.-2C.2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\sqrt{1-{6}^{x}}$的定义域为(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x+a|+|x-2|
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[0,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列所给出的赋值语句中正确的是(  )
A.-5=xB.x=y=1C.y=-yD.x+y=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+2ax+1-a在区间[0,1]上的最大值是2,求实数a的值.

查看答案和解析>>

同步练习册答案