精英家教网 > 高中数学 > 题目详情

【题目】已知集合D= ,有下面四个命题:
p1(x,y)∈D, ≥3 p2(x,y)∈D, <1
p3(x,y)∈D, <4 p4(x,y)∈D, ≥2
其中的真命题是(
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4

【答案】A
【解析】解:集合D= 表示焦点在x轴上,长轴长为4,短轴长为2 的椭圆,

表示椭圆上的点到(1,0)点的距离d,
则d∈[1,3],
故p1(x,y)∈D, ≥3,为真命题,
p2(x,y)∈D, <1,为假命题,
p3(x,y)∈D, <4,为真命题,
p4(x,y)∈D, ≥2,为假命题,
故p1 , p3是真命题,
故选:A.
【考点精析】利用全称命题和特称命题对题目进行判断即可得到答案,需要熟知全称命题,它的否定;全称命题的否定是特称命题;特称命题,它的否定;特称命题的否定是全称命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r= ;类比这个结论可知:四面体P﹣ABC的四个面的面积分别为S1、S2、S3、S4 , 内切球的半径为r,四面体P﹣ABC的体积为V,则r=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1 , F2分别是C: + =1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为 ,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)= v,g(x)=f(x)+af′(x).
(1)若a<0,试判断g(x)在定义域内的单调性;
(2)若g(x)在[1,e]上的最小值为 ,求a的值;
(3)证明:当a≥1时,g(x)>ln(x+1)在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 (a>0,b>0)的离心率为 ,虚轴长为4.
(1)求双曲线的标准方程;
(2)过点(0,1),倾斜角为45°的直线l与双曲线C相交于A、B两点,O为坐标原点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A1B1C1D1的棱长为1,以顶点A为球心, 为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+ 的取值范围是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣2ax+2+b,(a≠0),若f(x)在区间[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)﹣mx在[2,4]上为单调函数,求实数m的取值范围.

查看答案和解析>>

同步练习册答案