精英家教网 > 高中数学 > 题目详情
18.过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的右焦点F作x轴的垂线,交双曲线于A、B两点,若双曲线的左顶点C在以AB为直径的圆的内部,则此双曲线离心率e的取值范围是(  )
A.($\frac{1+\sqrt{5}}{2},+∞$)B.($\frac{1+\sqrt{5}}{2},2$)C.(2,+∞)D.(1,$\frac{1+\sqrt{5}}{2}$)

分析 作出图形如图,由左顶点C在以AB为直径的圆的内部,得|CF|<|AF|,将其转化为关于a、b、c的式子,再结合平方关系和离心率的公式,求出a,c的关系即可得到结论.

解答 解:直线AB方程为:x=c,其中c=$\sqrt{{a}^{2}+{b}^{2}}$
因此,设A(c,y0),B(c,-y0),
∴$\frac{{c}^{2}}{{a}^{2}}$-$\frac{{{y}_{0}}^{2}}{{b}^{2}}$=1,解之得y0=$\frac{{b}^{2}}{a}$,得|AF|=$\frac{{b}^{2}}{a}$,
∵双曲线的左焦点C(-a,0)在以AB为直径的圆内部
∴|CF|<|AF|,即a+c<$\frac{{b}^{2}}{a}$,
即a2+ac<b2
将b2=c2-a2,并化简整理,
得2a2+ac-c2<0
两边都除以a2,整理得e2-e-2>0,
解得e>2(舍负)
故选:C

点评 本题给出以双曲线通径为直径的圆,当左焦点在此圆内时求双曲线的离心率,着重考查了双曲线的标准方程和简单几何性质等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数y=$\frac{cosθ}{2+sinθ}$(θ∈R)的值域为[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.一盒乒乓球共15个,其中有4个是已用过的,在比赛时,某运动员从中随机取2个使用,比赛结束后又放回盒中,则此盒中已用过的乒乓球个数的所有可能取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,有一正三角形铁皮余料,欲利用余料剪裁出一个矩形(矩形的一个边在三角形的边上),并以该矩形制作一铁皮圆柱的侧面.问:如何剪裁,才能使得铁皮圆柱的体积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,三棱锥P-ABC的体积为12,D为PB中点,且EF$\stackrel{∥}{=}$MN$\stackrel{∥}{=}$$\frac{1}{2}$AC,则三棱柱BEF-DMN的体积为$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的一条渐近线经过点P(1,-2),则该双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线互相垂直,那么此双曲线的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=1+ax-alnx,a≠0.
(1)求f(x)的单调区间;
(2)若函数f(x)的图象过点(1,0),是否存在实数b,使得对任意的实数c∈[1,2],函数g(x)=x3+x2[f′(x)+b]在区间(c,3)上不单调(f′(x)是f(x)的导函数)?若存在,求b的取值范围;若不存在,请说明理由;
(3)设ai=$\frac{lni}{i}$(i∈N*),求证:a2•a3…an<$\frac{1}{n}$(n≥2且n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合A={x|1<x<3},B={x|x>2},则A∩B=(  )
A.{x|2<x<3}B.{x|1<x<3}C.{x|1<x<2}D.{x|x>1}

查看答案和解析>>

同步练习册答案