精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,点是直线上的动点,定点 的中点,动点满足.

(1)求点的轨迹的方程

(2)过点的直线交轨迹两点,上任意一点,直线两点,以为直径的圆是否过轴上的定点? 若过定点,求出定点的坐标;若不过定点,说明理由。

【答案】(1)(2) 为直径的圆过 轴上的定点

【解析】分析:(1)根据条件可得点的轨迹是以为焦点、以直线为准线的抛物线,其方程为.(2)假设以为直径的圆过轴上的定点, .由题意可得,由设直线的方程为与抛物线方程联立消元后得到二次方程,结合根与系数的关系和上式可得解得进而可得以 为直径的圆过 轴上的定点

详解:(1)由已知得垂直平分

轴,

所以点到点的距离和到直线的距离相等,

故点的轨迹是以为焦点、以直线为准线的抛物线

由条件可得轨迹的方程为

(2)假设以为直径的圆过轴上的定点

,

直线 的方程为

同理可得.

由已知得 恒成立,

设直线的方程为

消去整理得

所以

于是

整理得

解得

故以 为直径的圆过 轴上的定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两条对称轴之间的距离为,且图象上一个最低点为M.

(1)求ω,φ的值;

(2)求f(x)的图像的对称中心;

(3)当x∈时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面ABCD是矩形,平面ABCD,,E,F是线段BC,AB的中点.

证明:

在线段PA上确定点G,使得平面PED,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A、B、C三位老师分别教数学、英语、体育、劳技、语文、阅读六门课,每位教两门.已知:

(1)体育老师和数学老师住在一起,

(2)A老师是三位老师中最年轻的,

(3)数学老师经常与C老师下象棋,

(4)英语老师比劳技老师年长,比B老师年轻,

(5)三位老师中最年长的老师比其他两位老师家离学校远.

问:A、B、C三位老师每人各教哪几门课?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角梯形所在的平面垂直于平面.

(1)若的中点,求证:平面

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中, 在平面的射影为棱的中点, 为棱的中点,过直线作一个平面与平面平行,且与交于点,已知, .

(1)证明: 为线段的中点

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:关于x的一元二次方程有两个不相等的实数根;命题q:关于x的一元二次方程对于任意实数a都没有实数根.

若命题p为真命题,求实数m的取值范围;

若命题p和命题q中有且只有一个为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四面体P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC= AB,若四面体P﹣ABC的体积为 ,则该球的体积为(
A.
B.2π
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考) (参考公式:K2= ,其中n=a+b+c+d)

P(K2≥k0

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879


(2)现计划在这次场外调查中按年龄段选取6名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.

查看答案和解析>>

同步练习册答案