精英家教网 > 高中数学 > 题目详情
2.有一个容量为100的样本,其频率分布直方图如图所示,已知样本数据落在区间[10,12)内的频数比样本数据落在区间[8,10)内的频数少12,则实数m的值等于(  )
A.0.10B.0.11C.0.12D.0.13

分析 根据题意,求出样本数据落在区间[10,12)和[8,10)内的频率、频数和,再求出样本数据落在区间[8,10)内的频率,利用$\frac{频率}{组距}$求出m的值.

解答 解:根据题意,样本数据落在区间[10,12)和[8,10)内的频率和为:
1-(0.02+0.05+0.15)×2=0.56,
所以频数和为100×0.56=56,
又样本数据落在区间[10,12)内的频数比落在区间[8,10)内的频数少12,
所以样本数据落在区间[8,10)内的频率为$\frac{0.56-0.12}{2}$=0.22,
所以m=$\frac{0.22}{2}$=0.11.
故选:B.

点评 本题考查了频数,频率及频率分布直方图,运用统计知识解决实际问题、数据处理能力,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.等边三角形ABC与正方形ABDE有一公共边AB,二面角C-AB-D的余弦值为$\frac{\sqrt{3}}{3}$,M,N分别是AC.BC的中点,则EM,AN所成角的余弦值等于(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{-{3}^{x}+a}{{3}^{x+1}+b}$.
(1)当a=b=1时,求满足f(x)=3x的x的值;
(2)若函数f(x)是定义在R上的奇函数,
①判断f(x)在R的单调性并用定义法证明;
②当x≠0时,函数g(x)满足f(x)•[g(x)+2]=$\frac{1}{3}$(3-x-3x),若对任意x∈R且x≠0,不等式g(2x)≥m•g(x)-11恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若F1,F2是椭圆C:$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{m}$=1(0<m<9)的两个焦点,椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点M.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(0,$\sqrt{5}$)的直线l与椭圆C交于两点A、B,线段AB的中垂线l1交x轴于点N,R是线段AN的中点,求直线l1与直线BR的交点E的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=$\frac{2\sqrt{2}}{3}$,a=2,ccosB+bcosC=2acosB,则b的值为$\frac{3\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{3}$x3-x2-3x+1.
(1)求y=f(x)在x=1处的切线方程;
(2)求y=f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知:如图,空间四边形ABCD中,E,F分别是AB,AD的中点.
求证:EF∥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=lgx+x-2的零点所在的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,10)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,我市某居民小区拟在边长为1百米的正方形地块ABCD上划出一个三角形地块APQ种植草坪,两个三角形地块PAB与QAD种植花卉,一个三角形地块CPQ设计成水景喷泉,四周铺设小路供居民平时休闲散步,点P在边BC上,点Q在边CD上,记∠PAB=a.
(1)当∠PAQ=$\frac{π}{4}$时,求花卉种植面积S关于a的函数表达式,并求S的最小值;
(2)考虑到小区道路的整体规划,要求PB+DQ=PQ,请探究∠PAQ是否为定值,若是,求出此定值,若不是,请说明理由.

查看答案和解析>>

同步练习册答案