精英家教网 > 高中数学 > 题目详情

写出满足{a,b}M{a,b,c,d}的所有集合M.

答案:M可以是{a,b},{a,b,c},{a,b,d}
提示:

因为{a,b}M,所以M中必含有a、b两个元素,又M{a,b,c,d},则M中还可以含有c,d的部分,但不能是全部.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若数列{an},{bn}中,a1=a,b1=b,
an=-2an-1+4bn-1
bn=-5an-1+7bn-1
,(n∈N,n≥2).请按照要求完成下列各题,并将答案填在答题纸的指定位置上.
(1)可考虑利用算法来求am,bm的值,其中m为给定的数据(m≥2,m∈N).右图算法中,虚线框中所缺的流程,可以为下面A、B、C、D中的
ACD
ACD

(请填出全部答案)
A、B、
C、D、

(2)我们可证明当a≠b,5a≠4b时,{an-bn}及{5an-4bn}均为等比数列,请按答纸题要求,完成一个问题证明,并填空.
证明:{an-bn}是等比数列,过程如下:an-bn=(-2an-1+4bn-1)+(5an-1-7bn-1)=3an-1-3bn-1=3(an-1-bn-1
所以{an-bn}是以a1-b1=a-b≠0为首项,以
3
3
为公比的等比数列;
同理{5an-4bn}是以5a1-4b1=5a-4b≠0为首项,以
2
2
为公比的等比数列
(3)若将an,bn写成列向量形式,则存在矩阵A,使
an
bn
=A
an-1
bn-1
=A(A
an-2
bn-2
)=A2
an-2
bn-2
=…=An-1
a1
b1
,请回答下面问题:
①写出矩阵A=
-24
-57
-24
-57
;  ②若矩阵Bn=A+A2+A3+…+An,矩阵Cn=PBnQ,其中矩阵Cn只有一个元素,且该元素为Bn中所有元素的和,请写出满足要求的一组P,Q:
P=
1 
1 
Q=
1
1
P=
1 
1 
Q=
1
1
; ③矩阵Cn中的唯一元素是
2n+2-4
2n+2-4

计算过程如下:

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)对于集合M,定义函数fM(x)=
-1,x∈M
1,x∉M.
对于两个集合M,N,定义集合M△N={x|fM(x)•fN(x)=-1}.已知A={2,4,6,8,10},B={1,2,4,8,16}.
(Ⅰ)写出fA(1)和fB(1)的值,并用列举法写出集合A△B;
(Ⅱ)用Card(M)表示有限集合M所含元素的个数,求Card(X△A)+Card(X△B)的最小值;
(Ⅲ)有多少个集合对(P,Q),满足P,Q⊆A∪B,且(P△A)△(Q△B)=A△B?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐州模拟)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,
若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,半径分别为R,r(R>r>0)的两圆⊙O,⊙O1内切于点T,P是外圆⊙O上任意一点,连PT交⊙O1于点M,PN与内圆⊙O1相切,切点为N.求证:PN:PM为定值.
B.选修4-2:矩阵与变换
已知矩阵M=
21
34

(1)求矩阵M的逆矩阵;
(2)求矩阵M的特征值及特征向量;
C.选修4-2:矩阵与变换
在平面直角坐标系x0y中,求圆C的参数方程为
x=-1+rcosθ
y=rsinθ
为参数r>0),以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
π
4
)=2
2
.若直线l与圆C相切,求r的值.
D.选修4-5:不等式选讲
已知实数a,b,c满足a>b>c,且a+b+c=1,a2+b2+c2=1,求证:1<a+b<
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•门头沟区一模)对于集合M,定义函数fM(x)=
-1,x∈M
1,x∉M
,对于两个集合M,N,定义集合M?N={x|fM(x)•fN(x)=-1.已知A={1,2,3,4,5,6},B={1,3,9,27,81}.
(Ⅰ)写出fA(2)与fB(2)的值,并用列举法写出集合A?B;
(Ⅱ)用Card(M)表示有限集合M所含元素的个数,求Card(X?A)+Card(x?b)的最小值;
(Ⅲ)有多少个集合对(P,Q),满足P,Q⊆A∪B,且(P?A)?(Q?B)=A?B.

查看答案和解析>>

同步练习册答案