精英家教网 > 高中数学 > 题目详情

【题目】已知平面直角坐标系xoy中,点P(1,0),曲线C的参数方程为 (φ为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,倾斜角为α的直线l的极坐标方程为ρsin(α﹣θ)=sinα.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)若曲线C与直线l交于M,N两点,且 ,求α的值.

【答案】
(1)解:曲线C的参数方程为 (φ为参数).cos2φ+sin2φ=1,可得:

故得曲线C的普通方程为

直线l的极坐标方程为ρsin(α﹣θ)=sinα

ρsinαcosθ﹣ρsinθcosα=sinα

(x﹣1)sinα=ycosα

y=xtanα﹣tanα.

故得直线l的直角坐标方程为y=xtanα﹣tanα.


(2)解:由题意,可得直线l的参数方程 带入曲线C的普通方程可得:(3sin2α+1)+2cosαt﹣3=0,

可得:

可得:| |=| |=

=| |,

解得:|cosα|=

∴α=


【解析】(1)消去曲线C中的参数,可得普通方程,利用ρsinθ=y,ρcosθ=x,可得直线l的直角坐标方程.(2)利用参数方程的几何意义,求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015·新课标1卷)执行右面的程序框图,如果输入的t=0.01,则输出的n=( )

A.5
B.6
C.10
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为4,3,则输出v的值为(
A.20
B.61
C.183
D.548

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为F1 , F2 , 上顶点为B,若△BF1F2的周长为6,且点F1到直线BF2的距离为b. (Ⅰ)求椭圆C的方程;
(Ⅱ)设A1 , A2是椭圆C长轴的两个端点,点P是椭圆C上不同于A1 , A2的任意一点,直线A1P交直线x=m于点M,若以MP为直径的圆过点A2 , 求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是首项为1的单调递增的等比数列,且满足a3 成等差数列.
(1)求{an}的通项公式;
(2)若bn=log3(anan+1)(n∈N*),求数列{anbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空间几何体ABCDEF如图所示.已知面ABCD⊥面ADEF,ABCD为梯形,ADEF为正方形,且AB∥CD,AB⊥AD,CD=4,AB=AD=2,G为CE的中点. (Ⅰ)求证:BG∥面ADEF;
(Ⅱ)求证:面DBG⊥面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 若Sm1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*
(Ⅰ)求m的值;
(Ⅱ)若数列{bn}满足 =log2bn(n∈N+),求数列{(an+6)bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ)若曲线y=f(x)与直线y=kx相切于点P,求点P的坐标;
(Ⅱ)当a≤e时,证明:当x∈(0,+∞),f(x)≥a(x﹣lnx).

查看答案和解析>>

同步练习册答案