精英家教网 > 高中数学 > 题目详情
如图,已知A、B为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
和双曲线
x2
a2
-
y2
b2
=1
的公共顶点,P、Q分别为双曲线和椭圆上不同于A、B的动点,且
OP
OQ
(λ∈R,λ>1)
.设AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4
(1)求证:k1k2=
b2
a2

(2)求k1+k2+k3+k4的值;
(3)设F1、F2分别为双曲线和椭圆的右焦点,若PF1∥QF2,求k12+k22+k32+k42的值.
分析:(1)设P(x1,y1),则k1•k2=
y1
x1+a
y1
x1-a
=
y12
x12-a2
,再利用点P(x1,y1)在双曲线
x2
a2
-
y2
b2
=1
上,从而可证k1k2=
b2
a2

(2)先计算k1+k2=
y1
x1+a
+
y1
x1-a
=
2x1y1
x12-a2
=
2b2
a2
x1
y1
,设Q(x2,y2)同理可得k3+k4=-
2b2
a2
x2
y2
OP
OQ
共线⇒
x1
y1
=
x2
y2
,从而可求得k1+k2+k3+k4的值;
(3)由(2)可求得∴(k1+k22=4
b4
a4
x12
y12
,(k3+k42=4
b4
a4
x22
y22
,PF1∥QF2⇒|OF1|=λ|OF2|⇒λ2=
a2+b2
a2-b2
x12
y12
=
a4
b4
,从而得到(k1+k22=4,(k3+k42=4;问题即可解决.
解答:(1)证明:设P(x1,y1),k1•k2=
y1
x1+a
y1
x1-a
=
y12
x12-a2
,且
x12
a2
-
y12
b2
=1

∴x12-a2=
a2
b2
•y12
k1k2=
b2
a2

(2)解:∵k1+k2=
y1
x1+a
+
y1
x1-a
=
2x1 y1
x12-a2
=
2x1y1
a2
b2
• y12
=
2b2
a2
x1
y1

设Q(x2,y2),同理可得k3+k4=-
2b2
a2
x2
y2

OP
OQ
共线,
∴x1=λx2,y1=λy2
x1
y1
=
x2
y2

∴k1+k2+k3+k4=
2b2
a2
x1
y1
-
x2
y2
)=0;
(3)解:∵
OP
OQ
(λ∈R,λ>1)

x2=
1
λ
x1
y2=
1
λ
y1
,又
x22
a2
+
y22
b2
=1

x12
a2
+
y12
b2
=λ2
,又
x12
a2
-
y12
b2
=1

x12=
λ2+1
2
a2
y12=
λ2-1
2
b2

又∵若PF1∥QF2
∴|OF1|=λ|OF2|,
∴λ2=
a2+b2
a2-b2

x12
y12
=
λ2+1
λ2-1
a2
b2
=
a4
b4

∴(k1+k22=4
b4
a4
x12
y12
=4
b4
a4
a4
b4
=4;
同理(k3+k42=4;
k1k2=
b2
a2
k3k4=-
b2
a2

∴k12+k22+k32+k42=(k1+k22+(k3+k42-2(k1•k2+k3•k4)=4+4-0=8.
点评:本题考查圆锥曲线的综合,着重考查整体代换与方程思想,培养学生综合分析问题、解决问题的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浦东新区二模)(1)设椭圆C1
x2
a2
+
y2
b2
=1
与双曲线C29x2-
9y2
8
=1
有相同的焦点F1、F2,M是椭圆C1与双曲线C2的公共点,且△MF1F2的周长为6,求椭圆C1的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆D”的方程为y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.设“盾圆D”上的任意一点M到F(1,0)的距离为d1,M到直线l:x=3的距离为d2,求证:d1+d2为定值; 
(3)由抛物线弧E1:y2=4x(0≤x≤
2
3
)与第(1)小题椭圆弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封闭曲线为“盾圆E”.设过点F(1,0)的直线与“盾圆E”交于A、B两点,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),试用cosα表示r1;并求
r1
r2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1,F2为椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率e=
3
2
S△DEF2=1-
3
2
.若点M(x0,y0)在椭圆C上,则点N(
x0
a
y0
b
)称为点M的一个“椭点”.直线l与椭圆交于A,B两点,A,B两点的“椭点”分别为P,Q,已知以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的标准方程;
(2)△AOB的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化二模)如图展示了一个由区间(0,k)(其中k为一正实数)到实数集R上的映射过程:区间(0,k)中的实数m对应线段AB上的点M,如图1;将线段AB围成一个离心率为
3
2
的椭圆,使两端点A、B恰好重合于椭圆的一个短轴端点,如图2;再将这个椭圆放在平面直角坐标系中,使其中心在坐标原点,长轴在x轴上,已知此时点A的坐标为(0,1),如图3,在图形变化过程中,图1中线段AM的长度对应于图3中的椭圆弧ADM的长度.图3中直线AM与直线y=-2交于点N(n,-2),则与实数m对应的实数就是n,记作f(m)=n,

现给出下列5个命题①f(
k
2
)=6
;②函数f(m)是奇函数;③函数f(m)在(0,k)上单调递增;④函数f(m)的图象关于点(
k
2
,0)
对称;⑤函数f(m)=3
3
时AM过椭圆的右焦点.其中所有的真命题是(  )

查看答案和解析>>

科目:高中数学 来源:2012届重庆市“名校联盟”高二第一次联考文科数学试卷(解析版) 题型:解答题

如图,已知椭圆C的中心在原点O,焦点在轴上,长轴长是短轴

长的2倍,且经过点M. 平行于OM的直线轴上的截距为并交椭

圆C于A、B两个不同点.

(1)求椭圆C的标准方程;

(2)求的取值范围;

y

 
(3)求证:直线MA、MB与轴始终围成一个等腰三角形.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)设椭圆C1数学公式与双曲线C2数学公式有相同的焦点F1、F2,M是椭圆C1与双曲线C2的公共点,且△MF1F2的周长为6,求椭圆C1的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆D”的方程为数学公式.设“盾圆D”上的任意一点M到F(1,0)的距离为d1,M到直线l:x=3的距离为d2,求证:d1+d2为定值;
(3)由抛物线弧E1:y2=4x(0数学公式)与第(1)小题椭圆弧E2数学公式数学公式)所合成的封闭曲线为“盾圆E”.设过点F(1,0)的直线与“盾圆E”交于A、B两点,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),试用cosα表示r1;并求数学公式的取值范围.

查看答案和解析>>

同步练习册答案