精英家教网 > 高中数学 > 题目详情

【题目】给定数列.,该数列前的最小值记为,后的最大值记为,令.

1)设数列2163,写出的值;

2)设是等比数列,公比,且,证明:是等比数列;

3)设是公差大于0的等差数列,且,证明:是等差数列.

【答案】1;(2)证明见解析;(3)证明见解析

【解析】

1)求出的值,并结合,可求出的值;

2)易知数列是递减数列,从而可知时,,可得,且,进而可得,从而可知为定值,即可证明结论成立;

3是等差数列,先用反证法证明是单调递减数列,再用反证法证明为数列中的最大项,从而可知,则,进而可证明结论成立.

1)由题意,,则

,则

,则.

2)因为是等比数列,公比,且,所以数列是递减数列,

时,,所以,且

所以时,

所以,即是等比数列.

3)由是公差大于0的等差数列,且,可知.

①先用反证法证明是递减数列,

假设不是递减数列,设是第一个使得成立的项,则,所以,即,与相矛盾,

所以是单调递减数列.

②再用反证法证明为数列中的最大项,

假设不是数列的最大项,即存在使得成立,

时,满足,则,故,与矛盾,即

时,满足,则,故,与矛盾,

所以为数列中的最大项.

综上,是单调递减数列,且为数列中的最大项,

,即

时,

所以是等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正方体的六个面的中心可构成一个正八面体,现从正方体内部任取一个点,则该点落在这个正八面体内部的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与函数)的图象相交,将其中三个相邻交点从左到右依次记为ABC,且满足有下列结论:

n的值可能为2

,且时,的图象可能关于直线对称

时,有且仅有一个实数ω,使得上单调递增;

不等式恒成立

其中所有正确结论的编号为( )

A.③B.①②C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求曲线的公切线方程:

2)若有两个极值点,且,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中,角的对边分别为________.是否存在以为边的三角形?如果存在,求出的面积;若不存在,说明理由.

从①;②;③这三个条件中任选一个,补充在上面问题中并作答.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直角梯形中,,四边形为矩形,,平面平面.

1)求证:平面

2)求二面角的正弦值;

3)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有一题:今有牛、马、羊食人苗,苗主责之粟四斗.羊主曰:我羊食半马.马主曰:我马食半牛.今欲衰偿之,问各出几何?其意是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿4斗粟,羊主人说:我羊所吃的禾苗只有马的一半.马主人说:我马所吃的禾苗只有牛的一半.打算按此比率偿还,牛、马、羊的主人各应赔偿多少粟?在这个问题中,牛主人比羊主人多赔偿了多少斗(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩.

某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,169).

(Ⅰ)求物理原始成绩在区间(47,86)的人数;

(Ⅱ)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间[61,80]的人数,求X的分布列和数学期望.

(附:若随机变量,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.卷八中第33问:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )

A.28B.56C.84D.120

查看答案和解析>>

同步练习册答案