精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2﹣(a﹣2)x+a﹣4;
(1)若函数y=f(x)在区间[1,2]上的最小值为4﹣a,求实数a的取值范围;
(2)是否存在整数m,n,使得关于x的不等式m≤f(x)≤n的解集恰好为[m,n],若存在,求出m,n的值,若不存在,请说明理由.

【答案】
(1)解:函数f(x)=x2﹣(a﹣2)x+a﹣4的对称轴为x=

①当 ≤1,即a≤4时,f(x)min=f(1)=1﹣(a﹣2)+a﹣4=﹣1=4﹣aa=5,不满足a≤4,

②当 ≥2,即a≥6时,f(x)min=f(2)=2﹣2(a﹣2)+a﹣4=4﹣a=4﹣aa∈Ra≥6符合题意.

③1< <2,即4<a<6时,f(x)min=f( )= =4﹣aa=6a∈

综上:实数a的取值范围;a≥6.


(2)解:假设存在整数m,n,使得关于x的不等式m≤f(x)≤n的解集恰好为[m,n],即m≤x2﹣(a﹣2)x+a﹣4≤n的解集为{x|m≤x≤n}.可得f(m)=m,f(n)=n.

即x2﹣(a﹣2)x+a﹣4=x的两个实数根为m,n.即可得出.m+n=a﹣1,mn=a﹣4

m+n=mn+3m(1﹣n)=3﹣n,当n=1时,m不存在,舍去,

当n≠1时,m= m=﹣1,n=2或m=0,n=3

存在整数m,n,m=﹣1,n=2或m=0,n=3,使得关于x的不等式m≤f(x)≤n的解集恰好为[m,n]


【解析】(1)找到二次函数的对称轴,根据区间定轴动的处理方法,分情况讨论得到a的取值范围,(2)根据一元二次不等式的解集,即为一元二次方程的两个根,得到f(m)=m,f(n)=n,讨论可得出存在这样的整数.
【考点精析】利用二次函数的性质对题目进行判断即可得到答案,需要熟知增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣5x+4lnx.
(1)求函数f(x)的单调区间;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x取实数,则f(x)与g(x)表示同一个函数的是( )
A.f(x)=x,g(x)=
B.f(x)= ,g(x)=
C.f(x)=1,g(x)=(x﹣1)0
D.f(x)= ,g(x)=x﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一元二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,其中一个公共点的坐标为(c,0),且当0<x<c时,恒有f(x)>0.
(1)当a=1, 时,求出不等式f(x)<0的解;
(2)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;
(4)若不等式m2﹣2km+1+b+ac≥0对所有k∈[﹣1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)定义域是D,若对任意x1 , x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数,设函数y=f(x)在[0,1]上为非减函数,满足条件:①f(0)=0;②f( )= f(x);③f(1﹣x)=1﹣f(x);则f( )+f( )=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A={(x,y)|y=a|x|,x∈R},B={(x,y)|y=x+a,x∈R},已知集合A∩B中有且仅有一个元素,则常数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 的离心率为 ,右焦点到直线 的距离为 ,过M(0,﹣1)的直线l交椭圆于A,B两点.
(1)求椭圆的方程;
(2)若直线l交x轴于N, ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在[1,+∞)的函数,对任意正实数x,f(3x)=3f(x),且f(x)=1﹣|x﹣2|,1≤x≤3,则使得f(x)=f(2015)的最小实数x为( )
A.172
B.415
C.557
D.89

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(已知幂函数f(x)=x ,(k∈Z)满足f(2)<f(3).
(1)求实数k的值,并求出相应的函数f(x)解析式;
(2)对于(1)中的函数f(x),试判断是否存在正数q,使函数g(x)=1﹣qf(x)+(2q﹣1)x在区间[﹣1,2]上值域为 .若存在,求出此q.

查看答案和解析>>

同步练习册答案