精英家教网 > 高中数学 > 题目详情
18.若实数x、y满足不等式组$\left\{\begin{array}{l}2x+y+2≥0\\ x+y+m≤0\\ y≥0\end{array}\right.$,且z=y-2x的最小值等于-2,则实数m的值等于-1.

分析 作出不等式组对应的平面区域,利用z=y-2x的最小值等于-2,结合数形结合即可得到结论.

解答 -1解:由z=y-2x,得y=2x+z,
作出不等式对应的可行域,
平移直线y=2x+z,
由平移可知当直线y=2x+z经过点A(1,0)时,
直线y=2x+z的截距最小,此时z取得最小值为-2,
即y-2x=-2,
点A也在直线x+y+m=0上,则m=-1,
故答案为:-1

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=$\left\{\begin{array}{l}{2x(0≤x≤1)}\\{{x}^{2}-4x+m(x>1)}\end{array}\right.$的值域为[0,+∞),则m的取值范围是m≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的首项a1=2,且an=2an-1-1(n∈N+,n≥2).
(1)求证:数列{an-1}为等比数列;并求数列{an}的通项公式;
(2)求数列{n•an-n}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a=log0.34,b=log0.30.2,$c={({\frac{1}{e}})^π}$,将a,b,c用>号连起来为b>c>a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a=cos212°-sin212°,b=$\frac{2tan12°}{1-ta{n}^{2}12°}$,c=$\sqrt{\frac{1-cos48°}{2}}$,则有(  )
A.c<b<aB.a<b<cC.a<c<bD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算(式中各字母均为正数)
(1)$(\frac{{8{s^6}{t^{-3}}}}{{125{r^9}}}{)^{-\frac{2}{3}}}$
(2)$(3{x^{\frac{1}{4}}}+2{y^{-\frac{1}{2}}})(3{x^{\frac{1}{4}}}-2{y^{-\frac{1}{2}}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系中,以原点O为极点,以x轴正半轴为极轴建立极坐标系,点P的极坐标为(1,π),已知曲线C:ρ=2$\sqrt{2}asin(θ+\frac{π}{4})(a>0)$,直线l过点P,其参数方程为:$\left\{\begin{array}{l}x=m+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数),直线l与曲线C分别交于M,N.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)若|PM|+|PN|=5,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,曲线C的方程为$ρ=4(cosθ+sinθ)-\frac{6}{ρ}$,以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系.
(1)求曲线C的参数方程;
(2)在直角坐标系中,点M(x,y)是曲线C上一动点,求x+y的最大值,并求此时点M的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知${x_1}={log_{\frac{1}{3}}}2$,${x_2}={2^{-\frac{1}{2}}}$,${({\frac{1}{3}})^{x3}}={log_3}{x_3}$,则(  )
A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x3<x1<x2

查看答案和解析>>

同步练习册答案